001     163861
005     20240229123158.0
024 7 _ |a 10.1002/ijc.33018
|2 doi
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
024 7 _ |a altmetric:80386284
|2 altmetric
024 7 _ |a pmid:32319674
|2 pmid
037 _ _ |a DKFZ-2020-02095
082 _ _ |a 610
100 1 _ |a Boakye, Daniel
|0 P:(DE-He78)657300dfd28903ec8149ca9bf5e7968d
|b 0
|e First author
245 _ _ |a Blood markers of oxidative stress are strongly associated with poorer prognosis in colorectal cancer patients
260 _ _ |a Bognor Regis
|c 2020
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1608117481_20752
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Int. J. Cancer. 2020;147:2373–2386#EA:C070#LA:C070#
520 _ _ |a Oxidative stress has been implicated in the initiation of several cancers, including colorectal cancer (CRC). Whether it also plays a role in CRC prognosis is unclear. We assessed the associations of two oxidative stress biomarkers (Diacron's reactive oxygen metabolites [d-ROMs] and total thiol level [TTL]) with CRC prognosis. CRC patients who were diagnosed in 2003 to 2012 and recruited into a population-based study in Germany (n = 3361) were followed for up to 6 years. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) for the associations of d-ROMs and TTL (measured from blood samples collected shortly after CRC diagnosis) with overall survival (OS) and disease-specific survival (DSS) were estimated using multivariable Cox regression. Particularly pronounced associations of higher d-ROMs with lower survival were observed in stage IV patients, with patients in the highest (vs lowest) tertile having much lower OS (HR = 1.52, 95% CI = 1.14-2.04) and DSS (HR = 1.61, 95% CI = 1.20-2.17). For TTL, strong inverse associations of TTL with mortality were observed within all stages. In patients of all stages, those in the highest (vs lowest) quintile had substantially higher OS (HR = 0.48, 95% CI = 0.38-0.62) and DSS (HR = 0.52, 95% CI = 0.39-0.69). The addition of these biomarkers to models that included age, sex, tumor stage and subsite significantly improved the prediction of CRC prognosis. The observed strong associations of higher d-ROMs and lower TTL levels with poorer prognosis even in stage IV patients suggest that oxidative stress contributes significantly to premature mortality in CRC patients and demonstrate a large potential of these biomarkers in enhancing the prediction of CRC prognosis beyond tumor stage.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jansen, Lina
|0 P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09
|b 1
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 2
700 1 _ |a Jansen, Eugene H. J. M.
|b 3
700 1 _ |a Schneider, Martin
|0 P:(DE-He78)0d37cc734b95fed555f2244d6fee6320
|b 4
700 1 _ |a Halama, Niels
|0 P:(DE-He78)0a4053be7ffd6aa9bef69de28753a601
|b 5
700 1 _ |a Gào, Xin
|0 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
|b 6
700 1 _ |a Chang‐Claude, Jenny
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 8
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 9
|e Last author
773 _ _ |a 10.1002/ijc.33018
|g Vol. 147, no. 9, p. 2373 - 2386
|0 PERI:(DE-600)1474822-8
|n 9
|p 2373 - 2386
|t International journal of cancer
|v 147
|y 2020
|x 1097-0215
909 C O |p VDB
|o oai:inrepo02.dkfz.de:163861
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)657300dfd28903ec8149ca9bf5e7968d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-He78)0d37cc734b95fed555f2244d6fee6320
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)0a4053be7ffd6aa9bef69de28753a601
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2018
|d 2020-02-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-26
920 1 _ |0 I:(DE-He78)D240-20160331
|k D240
|l Translationale Immuntherapie
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D240-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21