001     163862
005     20240229123158.0
024 7 _ |a 10.1158/1055-9965.EPI-20-0714
|2 doi
024 7 _ |a 1055-9965
|2 ISSN
024 7 _ |a 1538-7755
|2 ISSN
024 7 _ |a altmetric:91734264
|2 altmetric
024 7 _ |a 33008876
|2 pmid
037 _ _ |a DKFZ-2020-02096
082 _ _ |a 610
100 1 _ |a Neumeyer, Sonja
|0 P:(DE-He78)bc9ae72f1f27696587eeb1c81e48fb69
|b 0
|e First author
245 _ _ |a Genetic variants in the regulatory T cell related pathway and colorectal cancer prognosis
260 _ _ |a Philadelphia, Pa.
|c 2020
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634732564_21237
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Dec;29(12):2719-2728#EA:C020#LA:C020#
520 _ _ |a Background: High numbers of lymphocytes in tumor tissue, including T regulatory cells (Treg), have been associated with better colorectal cancer (CRC) survival. Tregs, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer and therefore variants in genes related to Treg differentiation and function could be associated with CRC prognosis.Methods: In a prospective German cohort of 3 593 CRC patients, we assessed the association of 771 SNPs in 58 T-reg related genes with overall and CRC-specific survival using Cox regression models. Effect modification by microsatellite instability (MSI) status was also investigated since tumors with MSI show greater lymphocytic infiltration and have been associated with better prognosis. Replication of significant results was attempted in 2 047 CRC patients of the International Survival Analysis in Colorectal cancer Consortium (ISACC).Results: A significant association of the TGFBR3 SNP rs7524066 with more favorable CRC-specific survival (hazard ratio (HR) per minor allele: 0.83, 95% confidence interval (CI): 0.74-0.94, p-value: 0.0033) was replicated in ISACC (HR: 0.82, 95% CI 0.68-0.98, p-value: 0.03). Suggestive evidence for association was found with two IL7 SNPs, rs16906568 and rs7845577. Thirteen SNPs with differential associations with overall survival according to MSI in the discovery analysis were not confirmed.Conclusions: Common genetic variation in the Treg pathway implicating genes such as TGFBR3 and IL7 was shown to be associated with prognosis of CRC patients.Impact: The implicated genes warrant further investigation.
536 _ _ |a 313 - Cancer risk factors and prevention (POF3-313)
|0 G:(DE-HGF)POF3-313
|c POF3-313
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hua, Xinwei
|0 0000-0003-2114-2975
|b 1
700 1 _ |a Seibold, Petra
|0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
|b 2
700 1 _ |a Jansen, Lina
|0 P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09
|b 3
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 4
700 1 _ |a Burwinkel, Barbara
|0 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
|b 5
700 1 _ |a Halama, Niels
|b 6
700 1 _ |a Berndt, Sonja I.
|b 7
700 1 _ |a Phipps, Amanda I.
|b 8
700 1 _ |a Sakoda, Lori C.
|0 0000-0002-0900-5735
|b 9
700 1 _ |a Schoen, Robert E
|0 0000-0001-7153-2766
|b 10
700 1 _ |a Slattery, Martha L.
|0 0000-0002-1655-6543
|b 11
700 1 _ |a Chan, Andrew T.
|b 12
700 1 _ |a Gala, Manish
|b 13
700 1 _ |a Joshi, Amit D.
|b 14
700 1 _ |a Ogino, Shuji
|0 0000-0002-3909-2323
|b 15
700 1 _ |a Song, Mingyang
|b 16
700 1 _ |a Herpel, Esther
|b 17
700 1 _ |a Bläker, Hendrik
|b 18
700 1 _ |a Kloor, Matthias
|0 P:(DE-He78)028ee60cca729028708496826f077b58
|b 19
700 1 _ |a Scherer, Dominique
|b 20
700 1 _ |a Ulrich, Alexis
|0 0000-0003-1469-2186
|b 21
700 1 _ |a Ulrich, Cornelia M
|b 22
700 1 _ |a Win, Aung K
|0 0000-0002-2794-5261
|b 23
700 1 _ |a Figueiredo, Jane C.
|b 24
700 1 _ |a Hopper, John L.
|b 25
700 1 _ |a Macrae, Finlay
|b 26
700 1 _ |a Milne, Roger L
|b 27
700 1 _ |a Giles, Graham G.
|0 0000-0003-4946-9099
|b 28
700 1 _ |a Buchanan, Daniel D.
|0 0000-0003-2225-6675
|b 29
700 1 _ |a Peters, Ulrike
|b 30
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 31
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 32
700 1 _ |a Newcomb, Polly A.
|b 33
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 34
|e Last author
773 _ _ |a 10.1158/1055-9965.EPI-20-0714
|g p. cebp.0714.2020 -
|0 PERI:(DE-600)2036781-8
|n 12
|p 2719-2728
|t Cancer epidemiology, biomarkers & prevention
|v 29
|y 2020
|x 1538-7755
909 C O |p VDB
|o oai:inrepo02.dkfz.de:163862
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)bc9ae72f1f27696587eeb1c81e48fb69
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)bbfe0ebad1e3b608bca2b49d4f86bd09
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)15b7fd2bc02d5ef47a2fe2dd0140d2bf
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 19
|6 P:(DE-He78)028ee60cca729028708496826f077b58
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 31
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 32
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 34
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER EPIDEM BIOMAR : 2018
|d 2020-01-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCER EPIDEM BIOMAR : 2018
|d 2020-01-17
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 3
920 1 _ |0 I:(DE-He78)C080-20160331
|k C080
|l Molekulare Epidemiologie
|x 4
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)C080-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21