000163996 001__ 163996
000163996 005__ 20240229133511.0
000163996 0247_ $$2doi$$a10.1007/s00415-020-10254-2
000163996 0247_ $$2pmid$$apmid:33047224
000163996 0247_ $$2ISSN$$a0012-1037
000163996 0247_ $$2ISSN$$a0340-5354
000163996 0247_ $$2ISSN$$a0939-1517
000163996 0247_ $$2ISSN$$a1432-1459
000163996 0247_ $$2ISSN$$a1619-800X
000163996 0247_ $$2altmetric$$aaltmetric:92445491
000163996 037__ $$aDKFZ-2020-02196
000163996 041__ $$aeng
000163996 082__ $$a610
000163996 1001_ $$00000-0001-9734-4632$$aGerhalter, Teresa$$b0
000163996 245__ $$aQuantitative 1H and 23Na muscle MRI in Facioscapulohumeral muscular dystrophy patients.
000163996 260__ $$aBerlin$$bSpringer59671$$c2021
000163996 264_1 $$2Crossref$$3online$$bSpringer Science and Business Media LLC$$c2020-10-12
000163996 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2021-03-01
000163996 264_1 $$2Crossref$$3print$$bSpringer Science and Business Media LLC$$c2021-03-01
000163996 3367_ $$2DRIVER$$aarticle
000163996 3367_ $$2DataCite$$aOutput Types/Journal article
000163996 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617964750_25638
000163996 3367_ $$2BibTeX$$aARTICLE
000163996 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000163996 3367_ $$00$$2EndNote$$aJournal Article
000163996 500__ $$a2021 Mar;268(3):1076-1087
000163996 520__ $$aOur aim was to assess the role of quantitative 1H and 23Na MRI methods in providing imaging biomarkers of disease activity and severity in patients with Facioscapulohumeral muscular dystrophy (FSHD).We imaged the lower leg muscles of 19 FSHD patients and 12 controls with a multimodal MRI protocol to obtain STIR-T2w images, fat fraction (FF), water T2 (wT2), water T1 (wT1), tissue sodium concentration (TSC), and intracellular-weighted sodium signal (inversion recovery (IR) and triple quantum filter (TQF) sequence). In addition, the FSHD patients underwent muscle strength testing.Imaging biomarkers related with water mobility (wT1 and wT2) and ion homeostasis (TSC, IR, TQF) were increased in muscles of FSHD patients. Muscle groups with FF > 10% had higher wT2, wT1, TSC, IR, and TQF values than muscles with FF < 10%. Muscles with FF < 10% resembled muscles of healthy controls for these MRI disease activity measures. However, wT1 was increased in few muscles without fat replacement. Furthermore, few STIR-negative muscles (n = 11/76) exhibited increased wT1, TSC, IR or TQF. Increased wT1 as well as 23Na signals were also present in muscles with normal wT2. Muscle strength was related to the mean FF and all imaging biomarkers of tibialis anterior except wT2 were correlated with dorsal flexion.The newly evaluated imaging biomarkers related with water mobility (wT1) and ion homeostasis (TSC, IR, TQF) showed different patterns compared to the established markers like FF in muscles of FSHD patients. These quantitative biomarkers could thus contain valuable complementary information for the early characterization of disease progression.
000163996 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000163996 542__ $$2Crossref$$i2020-10-12$$uhttps://creativecommons.org/licenses/by/4.0
000163996 542__ $$2Crossref$$i2020-10-12$$uhttps://creativecommons.org/licenses/by/4.0
000163996 588__ $$aDataset connected to CrossRef, PubMed,
000163996 7001_ $$00000-0002-4983-647X$$aMarty, Benjamin$$b1
000163996 7001_ $$00000-0002-4599-1122$$aGast, Lena V$$b2
000163996 7001_ $$aPorzelt, Katharina$$b3
000163996 7001_ $$00000-0002-2897-5411$$aHeiss, Rafael$$b4
000163996 7001_ $$aUder, Michael$$b5
000163996 7001_ $$aSchwab, Stefan$$b6
000163996 7001_ $$aCarlier, Pierre G$$b7
000163996 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b8$$udkfz
000163996 7001_ $$00000-0001-9812-3794$$aTürk, Matthias$$b9
000163996 77318 $$2Crossref$$3journal-article$$a10.1007/s00415-020-10254-2$$bSpringer Science and Business Media LLC$$d2020-10-12$$n3$$p1076-1087$$tJournal of Neurology$$v268$$x0340-5354$$y2020
000163996 773__ $$0PERI:(DE-600)1421299-7$$a10.1007/s00415-020-10254-2$$n3$$p1076-1087$$tJournal of neurology$$v268$$x0340-5354$$y2020
000163996 909CO $$ooai:inrepo02.dkfz.de:163996$$pVDB
000163996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000163996 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000163996 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000163996 9141_ $$y2021
000163996 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000163996 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000163996 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROL : 2015
000163996 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000163996 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000163996 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000163996 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000163996 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000163996 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000163996 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000163996 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000163996 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000163996 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000163996 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000163996 980__ $$ajournal
000163996 980__ $$aVDB
000163996 980__ $$aI:(DE-He78)E020-20160331
000163996 980__ $$aUNRESTRICTED
000163996 999C5 $$1S Sacconi$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bbadis.2014.05.021$$p607 -$$tBiochim Biophys Acta Mol Basis Dis$$uSacconi S, Salviati L, Desnuelle C (2015) Facioscapulohumeral muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 1852:607–614. https://doi.org/10.1016/j.bbadis.2014.05.021$$v1852$$y2015
000163996 999C5 $$1J Hamel$$2Crossref$$9-- missing cx lookup --$$a10.1007/s13311-018-00675-3$$p863 -$$tNeurotherapeutics$$uHamel J, Tawil R (2018) Facioscapulohumeral muscular dystrophy: update on pathogenesis and future treatments. Neurotherapeutics 15:863–871. https://doi.org/10.1007/s13311-018-00675-3$$v15$$y2018
000163996 999C5 $$1R Tawil$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nmd.2015.10.005$$p181 -$$tNeuromuscul Disord$$uTawil R, Padberg GW, Shaw DW et al (2016) Clinical trial preparedness in facioscapulohumeral muscular dystrophy: Clinical, tissue, and imaging outcome measures 29–30 May 2015, Rochester, New York. Neuromuscul Disord 26:181–186. https://doi.org/10.1016/j.nmd.2015.10.005$$v26$$y2016
000163996 999C5 $$1PG Carlier$$2Crossref$$9-- missing cx lookup --$$a10.3233/JND-160145$$p1 -$$tJ Neuromuscul Dis$$uCarlier PG, Marty B, Scheidegger O et al (2016) Skeletal muscle quantitative nuclear magnetic resonance imaging and spectroscopy as an outcome measure for clinical trials. J Neuromuscul Dis 3:1–28. https://doi.org/10.3233/JND-160145$$v3$$y2016
000163996 999C5 $$1GJ Strijkers$$2Crossref$$9-- missing cx lookup --$$a10.3233/JND-180333$$p1 -$$tJ Neuromuscul Dis$$uStrijkers GJ, Araujo ECA, Azzabou N et al (2019) Exploration of new contrasts, targets, and mr imaging and spectroscopy techniques for neuromuscular disease – a workshop report of working group 3 of the biomedicine and molecular biosciences COST action BM1304 MYO-MRI. J Neuromuscul Dis 6:1–30. https://doi.org/10.3233/JND-180333$$v6$$y2019
000163996 999C5 $$1SD Friedman$$2Crossref$$9-- missing cx lookup --$$a10.1002/mus.22342$$p500 -$$tMuscle Nerve$$uFriedman SD, Poliachik SL, Carter GT et al (2012) The magnetic resonance imaging spectrum of facioscapulohumeral muscular dystrophy. Muscle Nerve 45:500–506. https://doi.org/10.1002/mus.22342$$v45$$y2012
000163996 999C5 $$1K Mul$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000004647$$p2057 -$$tNeurology$$uMul K, Vincenten SCC, Voermans NC et al (2017) Adding quantitative muscle MRI to the FSHD clinical trial toolbox. Neurology 89:2057–2065. https://doi.org/10.1212/WNL.0000000000004647$$v89$$y2017
000163996 999C5 $$1JR Dahlqvist$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-019-09242-y$$p1127 -$$tJ Neurol$$uDahlqvist JR, Andersen G, Khawajazada T et al (2019) Relationship between muscle inflammation and fat replacement assessed by MRI in facioscapulohumeral muscular dystrophy. J Neurol 266:1127–1135. https://doi.org/10.1007/s00415-019-09242-y$$v266$$y2019
000163996 999C5 $$1B Marty$$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.27960$$p621 -$$tMagn Reson Med$$uMarty B, Carlier PG (2020) MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. Magn Reson Med 83:621–634. https://doi.org/10.1002/mrm.27960$$v83$$y2020
000163996 999C5 $$1M-A Weber$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-012-6512-8$$p2385 -$$tJ Neurol$$uWeber M-A, Nagel AM, Wolf MB et al (2012) Permanent muscular sodium overload and persistent muscle edema in Duchenne muscular dystrophy: a possible contributor of progressive muscle degeneration. J Neurol 259:2385–2392. https://doi.org/10.1007/s00415-012-6512-8$$v259$$y2012
000163996 999C5 $$1M-A Weber$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0b013e31823b9c78$$p2017 -$$tNeurology$$uWeber M-A, Nagel AM, Jurkat-Rott K, Lehmann-Horn F (2011) Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy. Neurology 77:2017–2024. https://doi.org/10.1212/WNL.0b013e31823b9c78$$v77$$y2011
000163996 999C5 $$1CD Constantinides$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiology.216.2.r00jl46559$$p559 -$$tRadiology$$uConstantinides CD, Gillen JS, Boada FE et al (2000) Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. Radiology 216:559–568. https://doi.org/10.1148/radiology.216.2.r00jl46559$$v216$$y2000
000163996 999C5 $$1T Gerhalter$$2Crossref$$9-- missing cx lookup --$$a10.1002/jmri.26681$$p1103 -$$tJ Magn Reson Imaging$$uGerhalter T, Gast LV, Marty B et al (2019) 23 Na MRI depicts early changes in ion homeostasis in skeletal muscle tissue of patients with duchenne muscular dystrophy. J Magn Reson Imaging 50:1103–1113. https://doi.org/10.1002/jmri.26681$$v50$$y2019
000163996 999C5 $$1P Germain$$2Crossref$$9-- missing cx lookup --$$a10.4137/CMC.S19005$$pS19005 -$$tClin Med Insights Cardiol$$uGermain P, El GS, Jeung M-Y et al (2014) Native T1 mapping of the heart – a pictorial review. Clin Med Insights Cardiol 84:S19005. https://doi.org/10.4137/CMC.S19005$$v84$$y2014
000163996 999C5 $$1G Madelin$$2Crossref$$9-- missing cx lookup --$$a10.1002/jmri.24168$$p511 -$$tJ Magn Reson Imaging$$uMadelin G, Regatte RR (2013) Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging 38:511–529. https://doi.org/10.1002/jmri.24168$$v38$$y2013
000163996 999C5 $$1RP Kline$$2Crossref$$uKline RP, Wu EX, Petrylak DP et al (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clin Cancer Res 6:2146–2156$$y2000
000163996 999C5 $$1R Stobbe$$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.20696$$p1305 -$$tMagn Reson Med$$uStobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54:1305–1310. https://doi.org/10.1002/mrm.20696$$v54$$y2005
000163996 999C5 $$1AM Nagel$$2Crossref$$9-- missing cx lookup --$$a10.1097/RLI.0b013e31822836f6$$p759 -$$tInvest Radiol$$uNagel AM, Amarteifio E, Lehmann-horn F, Jurkat-rott K (2011) 3 tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Invest Radiol 46:759–766. https://doi.org/10.1097/RLI.0b013e31822836f6$$v46$$y2011
000163996 999C5 $$1J Pekar$$2Crossref$$9-- missing cx lookup --$$a10.1016/0022-2364(86)90180-0$$p582 -$$tJ Magn Reson$$uPekar J, Leigh JS (1986) Detection of biexponential relaxation in sodium-23 facilitated by double-quantum filtering. J Magn Reson 69:582–584. https://doi.org/10.1016/0022-2364(86)90180-0$$v69$$y1986
000163996 999C5 $$1G Jaccard$$2Crossref$$9-- missing cx lookup --$$a10.1063/1.451458$$p6282 -$$tJ Chem Phys$$uJaccard G, Wimperis S, Bodenhausen G (1986) Multiple-quantum NMR spectroscopy of S=3/2 spins in isotropic phase: a new probe for multiexponential relaxation. J Chem Phys 85:6282. https://doi.org/10.1063/1.451458$$v85$$y1986
000163996 999C5 $$1MAU Hoesl$$2Crossref$$9-- missing cx lookup --$$a10.1002/jmri.26666$$p435 -$$tJ Magn Reson Imaging$$uHoesl MAU, Kleimaier D, Hu R et al (2019) 23 Na Triple-quantum signal of in vitro human liver cells, liposomes, and nanoparticles: cell viability assessment vs. separation of intra- and extracellular signal. J Magn Reson Imaging 50:435–444. https://doi.org/10.1002/jmri.26666$$v50$$y2019
000163996 999C5 $$1LA Jelicks$$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.1910290124$$p130 -$$tMagn Reson Med$$uJelicks LA, Gupta RK (1993) On the extracellular contribution to multiple quantum filtered 23Na NMR of perfused rat heart. Magn Reson Med 29:130–133$$v29$$y1993
000163996 999C5 $$1PJ Dyck$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1085-9489.2005.0010206.x$$p158 -$$tJ Peripher Nerv Syst$$uDyck PJ, Boes CJ, Mulder D et al (2005) History of standard scoring, notation, and summation of neuromuscular signs. A current survey and recommendation. J Peripher Nerv Syst 10:158–173. https://doi.org/10.1111/j.1085-9489.2005.0010206.x$$v10$$y2005
000163996 999C5 $$1GH Glover$$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.1910180211$$p371 -$$tMagn Reson Med$$uGlover GH, Schneider E (1991) Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 18:371–383. https://doi.org/10.1002/mrm.1910180211$$v18$$y1991
000163996 999C5 $$1AM Nagel$$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.22157$$p1565 -$$tMagn Reson Med$$uNagel AM, Laun FB, Weber MA et al (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62:1565–1573. https://doi.org/10.1002/mrm.22157$$v62$$y2009
000163996 999C5 $$1I Hancu$$2Crossref$$9-- missing cx lookup --$$a10.1002/(SICI)1522-2594(199912)42:6<1146::AID-MRM20>3.0.CO;2-S$$p1146 -$$tMagn Reson Med$$uHancu I, Boada F, Shen G (1999) Three-dimensional triple-quantum-filtered 23Na imaging of in vivo human brain. Magn Reson Med 42:1146–1154$$v42$$y1999
000163996 999C5 $$1LV Gast$$2Crossref$$9-- missing cx lookup --$$a10.1002/nbm.4010$$pe4010 -$$tNMR Biomed$$uGast LV, Gerhalter T, Hensel B et al (2018) Double quantum filtered 23Na MRI with magic angle excitation of human skeletal muscle in the presence of B0 and B1 inhomogeneities. NMR Biomed 31:e4010. https://doi.org/10.1002/nbm.4010$$v31$$y2018
000163996 999C5 $$1D Goutallier$$2Crossref$$uGoutallier D, Postel JM, Bernageau J et al (1994) Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 1:78–83$$y1994
000163996 999C5 $$1LH Wang$$2Crossref$$9-- missing cx lookup --$$a10.1093/hmg/ddy364$$p476 -$$tHum Mol Genet$$uWang LH, Friedman SD, Shaw D et al (2019) MRI-informed muscle biopsies correlate MRI with pathology and DUX4 target gene expression in FSHD. Hum Mol Genet 28:476–486. https://doi.org/10.1093/hmg/ddy364$$v28$$y2019
000163996 999C5 $$1N Azzabou$$2Crossref$$9-- missing cx lookup --$$a10.1002/jmri.24613$$p645 -$$tJ Magn Reson Imaging$$uAzzabou N, Loureiro de Sousa P, Caldas E, Carlier PG (2015) Validation of a generic approach to muscle water T2 determination at 3T in fat-infiltrated skeletal muscle. J Magn Reson Imaging 41:645–653. https://doi.org/10.1002/jmri.24613$$v41$$y2015
000163996 999C5 $$1R Umathum$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.13130757$$p569 -$$tRadiology$$uUmathum R, Rösler MB, Nagel AM (2013) In Vivo 39K MR imaging of human muscle and brain. Radiology 269:569–576. https://doi.org/10.1148/radiol.13130757$$v269$$y2013
000163996 999C5 $$1Y Benjamini$$2Crossref$$9-- missing cx lookup --$$a10.1111/j.2517-6161.1995.tb02031.x$$p289 -$$tJ R Stat Soc Ser B$$uBenjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x$$v57$$y1995
000163996 999C5 $$1D Mair$$2Crossref$$9-- missing cx lookup --$$a10.1159/000452763$$p32 -$$tEur Neurol$$uMair D, Huegens-Penzel M, Kress W et al (2017) Leg Muscle involvement in facioscapulohumeral muscular dystrophy: comparison between Facioscapulohumeral Muscular Dystrophy types 1 and 2. Eur Neurol 77:32–39. https://doi.org/10.1159/000452763$$v77$$y2017
000163996 999C5 $$1HE Kan$$2Crossref$$9-- missing cx lookup --$$a10.1002/nbm.1494$$p563 -$$tNMR Biomed$$uKan HE, Klomp DWJ, Wohlgemuth M et al (2010) Only fat infiltrated muscles in resting lower leg of FSHD patients show disturbed energy metabolism. NMR Biomed 23:563–568. https://doi.org/10.1002/nbm.1494$$v23$$y2010
000163996 999C5 $$1HE Kan$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nmd.2009.02.009$$p357 -$$tNeuromuscul Disord$$uKan HE, Scheenen TWJ, Wohlgemuth M et al (2009) Quantitative MR imaging of individual muscle involvement in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 19:357–362. https://doi.org/10.1016/j.nmd.2009.02.009$$v19$$y2009
000163996 999C5 $$1DB Olsen$$2Crossref$$9-- missing cx lookup --$$a10.1007/s00415-006-0230-z$$p1437 -$$tJ Neurol$$uOlsen DB, Gideon P, Jeppesen TD, Vissing J (2006) Leg muscle involvement in facioscapulohumeral muscular dystrophy assessed by MRI. J Neurol 253:1437–1441. https://doi.org/10.1007/s00415-006-0230-z$$v253$$y2006
000163996 999C5 $$1BH Janssen$$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0085416$$pe85416 -$$tPLoS ONE$$uJanssen BH, Voet NBM, Nabuurs CI et al (2014) Distinct disease phases in muscles of facioscapulohumeral dystrophy patients identified by MR detected fat infiltration. PLoS ONE 9:e85416. https://doi.org/10.1371/journal.pone.0085416$$v9$$y2014
000163996 999C5 $$1M Monforte$$2Crossref$$9-- missing cx lookup --$$a10.1002/jcsm.12473$$p1258 -$$tJ Cachexia Sarcopenia Muscle$$uMonforte M, Laschena F, Ottaviani P et al (2019) Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging. J Cachexia Sarcopenia Muscle 10:1258–1265. https://doi.org/10.1002/jcsm.12473$$v10$$y2019
000163996 999C5 $$1I Arpan$$2Crossref$$9-- missing cx lookup --$$a10.1212/WNL.0000000000000775$$p974 -$$tNeurology$$uArpan I, Willcocks RJ, Forbes SC et al (2014) Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology 83:974–980. https://doi.org/10.1212/WNL.0000000000000775$$v83$$y2014
000163996 999C5 $$1E Amarteifio$$2Crossref$$9-- missing cx lookup --$$a10.1148/radiol.12110980$$p154 -$$tRadiology$$uAmarteifio E, Nagel AM, Weber M, Lehmann-horn F (2012) Hyperkalemic periodic paralysis and permanent weakness : 3-T overload — initial results. Radiology 264:154–163$$v264$$y2012
000163996 999C5 $$1G Navon$$2Crossref$$9-- missing cx lookup --$$a10.1002/nbm.687$$p112 -$$tNMR Biomed$$uNavon G, Shinar H, Eliav U, Seo Y (2001) Multiquantum filters and order in tissues. NMR Biomed 14:112–132$$v14$$y2001
000163996 999C5 $$1VD Schepkin$$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.1910390408$$p557 -$$tMagn Reson Med$$uSchepkin VD, Choy IO, Budinger TF et al (1998) Sodium TQF NMR and intracellular sodium in isolated crystalloid perfused rat heart. Magn Reson Med 39:557–563$$v39$$y1998
000163996 999C5 $$1G Navon$$2Crossref$$9-- missing cx lookup --$$a10.1002/mrm.1910300415$$p503 -$$tMagn Reson Med$$uNavon G (1993) Complete elimination of the extracellular 23Na NMR signal in triple quantum filtered spectra of rat hearts in the presence of shift reagents. Magn Reson Med 30:503–506. https://doi.org/10.1002/mrm.1910300415$$v30$$y1993
000163996 999C5 $$1TR Eykyn$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.yjmcc.2015.07.009$$p95 -$$tJ Mol Cell Cardiol$$uEykyn TR, Aksentijević D, Aughton KL et al (2015) Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i. J Mol Cell Cardiol 86:95–101. https://doi.org/10.1016/j.yjmcc.2015.07.009$$v86$$y2015
000163996 999C5 $$1N Benkhedah$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmr.2014.01.007$$p67 -$$tJ Magn Reson$$uBenkhedah N, Bachert P, Nagel AM (2014) Two-pulse biexponential-weighted 23Na imaging. J Magn Reson 240:67–76. https://doi.org/10.1016/j.jmr.2014.01.007$$v240$$y2014