Home > Publications database > Quantitative 1H and 23Na muscle MRI in Facioscapulohumeral muscular dystrophy patients. > print |
001 | 163996 | ||
005 | 20240229133511.0 | ||
024 | 7 | _ | |a 10.1007/s00415-020-10254-2 |2 doi |
024 | 7 | _ | |a pmid:33047224 |2 pmid |
024 | 7 | _ | |a 0012-1037 |2 ISSN |
024 | 7 | _ | |a 0340-5354 |2 ISSN |
024 | 7 | _ | |a 0939-1517 |2 ISSN |
024 | 7 | _ | |a 1432-1459 |2 ISSN |
024 | 7 | _ | |a 1619-800X |2 ISSN |
024 | 7 | _ | |a altmetric:92445491 |2 altmetric |
037 | _ | _ | |a DKFZ-2020-02196 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Gerhalter, Teresa |0 0000-0001-9734-4632 |b 0 |
245 | _ | _ | |a Quantitative 1H and 23Na muscle MRI in Facioscapulohumeral muscular dystrophy patients. |
260 | _ | _ | |a Berlin |c 2021 |b Springer59671 |
264 | _ | 1 | |3 online |2 Crossref |b Springer Science and Business Media LLC |c 2020-10-12 |
264 | _ | 1 | |3 print |2 Crossref |b Springer Science and Business Media LLC |c 2021-03-01 |
264 | _ | 1 | |3 print |2 Crossref |b Springer Science and Business Media LLC |c 2021-03-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1617964750_25638 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a 2021 Mar;268(3):1076-1087 |
520 | _ | _ | |a Our aim was to assess the role of quantitative 1H and 23Na MRI methods in providing imaging biomarkers of disease activity and severity in patients with Facioscapulohumeral muscular dystrophy (FSHD).We imaged the lower leg muscles of 19 FSHD patients and 12 controls with a multimodal MRI protocol to obtain STIR-T2w images, fat fraction (FF), water T2 (wT2), water T1 (wT1), tissue sodium concentration (TSC), and intracellular-weighted sodium signal (inversion recovery (IR) and triple quantum filter (TQF) sequence). In addition, the FSHD patients underwent muscle strength testing.Imaging biomarkers related with water mobility (wT1 and wT2) and ion homeostasis (TSC, IR, TQF) were increased in muscles of FSHD patients. Muscle groups with FF > 10% had higher wT2, wT1, TSC, IR, and TQF values than muscles with FF < 10%. Muscles with FF < 10% resembled muscles of healthy controls for these MRI disease activity measures. However, wT1 was increased in few muscles without fat replacement. Furthermore, few STIR-negative muscles (n = 11/76) exhibited increased wT1, TSC, IR or TQF. Increased wT1 as well as 23Na signals were also present in muscles with normal wT2. Muscle strength was related to the mean FF and all imaging biomarkers of tibialis anterior except wT2 were correlated with dorsal flexion.The newly evaluated imaging biomarkers related with water mobility (wT1) and ion homeostasis (TSC, IR, TQF) showed different patterns compared to the established markers like FF in muscles of FSHD patients. These quantitative biomarkers could thus contain valuable complementary information for the early characterization of disease progression. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |x 0 |f POF IV |
542 | _ | _ | |i 2020-10-12 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
542 | _ | _ | |i 2020-10-12 |2 Crossref |u https://creativecommons.org/licenses/by/4.0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
700 | 1 | _ | |a Marty, Benjamin |0 0000-0002-4983-647X |b 1 |
700 | 1 | _ | |a Gast, Lena V |0 0000-0002-4599-1122 |b 2 |
700 | 1 | _ | |a Porzelt, Katharina |b 3 |
700 | 1 | _ | |a Heiss, Rafael |0 0000-0002-2897-5411 |b 4 |
700 | 1 | _ | |a Uder, Michael |b 5 |
700 | 1 | _ | |a Schwab, Stefan |b 6 |
700 | 1 | _ | |a Carlier, Pierre G |b 7 |
700 | 1 | _ | |a Nagel, Armin |0 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011 |b 8 |u dkfz |
700 | 1 | _ | |a Türk, Matthias |0 0000-0001-9812-3794 |b 9 |
773 | 1 | 8 | |a 10.1007/s00415-020-10254-2 |b Springer Science and Business Media LLC |d 2020-10-12 |n 3 |p 1076-1087 |3 journal-article |2 Crossref |t Journal of Neurology |v 268 |y 2020 |x 0340-5354 |
773 | _ | _ | |a 10.1007/s00415-020-10254-2 |0 PERI:(DE-600)1421299-7 |n 3 |p 1076-1087 |t Journal of neurology |v 268 |y 2020 |x 0340-5354 |
909 | C | O | |o oai:inrepo02.dkfz.de:163996 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011 |
913 | 0 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-315 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Imaging and radiooncology |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J NEUROL : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | 1 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l E020 Med. Physik in der Radiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
999 | C | 5 | |a 10.1016/j.bbadis.2014.05.021 |9 -- missing cx lookup -- |1 S Sacconi |p 607 - |2 Crossref |u Sacconi S, Salviati L, Desnuelle C (2015) Facioscapulohumeral muscular dystrophy. Biochim Biophys Acta Mol Basis Dis 1852:607–614. https://doi.org/10.1016/j.bbadis.2014.05.021 |t Biochim Biophys Acta Mol Basis Dis |v 1852 |y 2015 |
999 | C | 5 | |a 10.1007/s13311-018-00675-3 |9 -- missing cx lookup -- |1 J Hamel |p 863 - |2 Crossref |u Hamel J, Tawil R (2018) Facioscapulohumeral muscular dystrophy: update on pathogenesis and future treatments. Neurotherapeutics 15:863–871. https://doi.org/10.1007/s13311-018-00675-3 |t Neurotherapeutics |v 15 |y 2018 |
999 | C | 5 | |a 10.1016/j.nmd.2015.10.005 |9 -- missing cx lookup -- |1 R Tawil |p 181 - |2 Crossref |u Tawil R, Padberg GW, Shaw DW et al (2016) Clinical trial preparedness in facioscapulohumeral muscular dystrophy: Clinical, tissue, and imaging outcome measures 29–30 May 2015, Rochester, New York. Neuromuscul Disord 26:181–186. https://doi.org/10.1016/j.nmd.2015.10.005 |t Neuromuscul Disord |v 26 |y 2016 |
999 | C | 5 | |a 10.3233/JND-160145 |9 -- missing cx lookup -- |1 PG Carlier |p 1 - |2 Crossref |u Carlier PG, Marty B, Scheidegger O et al (2016) Skeletal muscle quantitative nuclear magnetic resonance imaging and spectroscopy as an outcome measure for clinical trials. J Neuromuscul Dis 3:1–28. https://doi.org/10.3233/JND-160145 |t J Neuromuscul Dis |v 3 |y 2016 |
999 | C | 5 | |a 10.3233/JND-180333 |9 -- missing cx lookup -- |1 GJ Strijkers |p 1 - |2 Crossref |u Strijkers GJ, Araujo ECA, Azzabou N et al (2019) Exploration of new contrasts, targets, and mr imaging and spectroscopy techniques for neuromuscular disease – a workshop report of working group 3 of the biomedicine and molecular biosciences COST action BM1304 MYO-MRI. J Neuromuscul Dis 6:1–30. https://doi.org/10.3233/JND-180333 |t J Neuromuscul Dis |v 6 |y 2019 |
999 | C | 5 | |a 10.1002/mus.22342 |9 -- missing cx lookup -- |1 SD Friedman |p 500 - |2 Crossref |u Friedman SD, Poliachik SL, Carter GT et al (2012) The magnetic resonance imaging spectrum of facioscapulohumeral muscular dystrophy. Muscle Nerve 45:500–506. https://doi.org/10.1002/mus.22342 |t Muscle Nerve |v 45 |y 2012 |
999 | C | 5 | |a 10.1212/WNL.0000000000004647 |9 -- missing cx lookup -- |1 K Mul |p 2057 - |2 Crossref |u Mul K, Vincenten SCC, Voermans NC et al (2017) Adding quantitative muscle MRI to the FSHD clinical trial toolbox. Neurology 89:2057–2065. https://doi.org/10.1212/WNL.0000000000004647 |t Neurology |v 89 |y 2017 |
999 | C | 5 | |a 10.1007/s00415-019-09242-y |9 -- missing cx lookup -- |1 JR Dahlqvist |p 1127 - |2 Crossref |u Dahlqvist JR, Andersen G, Khawajazada T et al (2019) Relationship between muscle inflammation and fat replacement assessed by MRI in facioscapulohumeral muscular dystrophy. J Neurol 266:1127–1135. https://doi.org/10.1007/s00415-019-09242-y |t J Neurol |v 266 |y 2019 |
999 | C | 5 | |a 10.1002/mrm.27960 |9 -- missing cx lookup -- |1 B Marty |p 621 - |2 Crossref |u Marty B, Carlier PG (2020) MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. Magn Reson Med 83:621–634. https://doi.org/10.1002/mrm.27960 |t Magn Reson Med |v 83 |y 2020 |
999 | C | 5 | |a 10.1007/s00415-012-6512-8 |9 -- missing cx lookup -- |1 M-A Weber |p 2385 - |2 Crossref |u Weber M-A, Nagel AM, Wolf MB et al (2012) Permanent muscular sodium overload and persistent muscle edema in Duchenne muscular dystrophy: a possible contributor of progressive muscle degeneration. J Neurol 259:2385–2392. https://doi.org/10.1007/s00415-012-6512-8 |t J Neurol |v 259 |y 2012 |
999 | C | 5 | |a 10.1212/WNL.0b013e31823b9c78 |9 -- missing cx lookup -- |1 M-A Weber |p 2017 - |2 Crossref |u Weber M-A, Nagel AM, Jurkat-Rott K, Lehmann-Horn F (2011) Sodium (23Na) MRI detects elevated muscular sodium concentration in Duchenne muscular dystrophy. Neurology 77:2017–2024. https://doi.org/10.1212/WNL.0b013e31823b9c78 |t Neurology |v 77 |y 2011 |
999 | C | 5 | |a 10.1148/radiology.216.2.r00jl46559 |9 -- missing cx lookup -- |1 CD Constantinides |p 559 - |2 Crossref |u Constantinides CD, Gillen JS, Boada FE et al (2000) Human skeletal muscle: sodium MR imaging and quantification-potential applications in exercise and disease. Radiology 216:559–568. https://doi.org/10.1148/radiology.216.2.r00jl46559 |t Radiology |v 216 |y 2000 |
999 | C | 5 | |a 10.1002/jmri.26681 |9 -- missing cx lookup -- |1 T Gerhalter |p 1103 - |2 Crossref |u Gerhalter T, Gast LV, Marty B et al (2019) 23 Na MRI depicts early changes in ion homeostasis in skeletal muscle tissue of patients with duchenne muscular dystrophy. J Magn Reson Imaging 50:1103–1113. https://doi.org/10.1002/jmri.26681 |t J Magn Reson Imaging |v 50 |y 2019 |
999 | C | 5 | |a 10.4137/CMC.S19005 |9 -- missing cx lookup -- |1 P Germain |p S19005 - |2 Crossref |u Germain P, El GS, Jeung M-Y et al (2014) Native T1 mapping of the heart – a pictorial review. Clin Med Insights Cardiol 84:S19005. https://doi.org/10.4137/CMC.S19005 |t Clin Med Insights Cardiol |v 84 |y 2014 |
999 | C | 5 | |a 10.1002/jmri.24168 |9 -- missing cx lookup -- |1 G Madelin |p 511 - |2 Crossref |u Madelin G, Regatte RR (2013) Biomedical applications of sodium MRI in vivo. J Magn Reson Imaging 38:511–529. https://doi.org/10.1002/jmri.24168 |t J Magn Reson Imaging |v 38 |y 2013 |
999 | C | 5 | |1 RP Kline |y 2000 |2 Crossref |u Kline RP, Wu EX, Petrylak DP et al (2000) Rapid in vivo monitoring of chemotherapeutic response using weighted sodium magnetic resonance imaging. Clin Cancer Res 6:2146–2156 |
999 | C | 5 | |a 10.1002/mrm.20696 |9 -- missing cx lookup -- |1 R Stobbe |p 1305 - |2 Crossref |u Stobbe R, Beaulieu C (2005) In vivo sodium magnetic resonance imaging of the human brain using soft inversion recovery fluid attenuation. Magn Reson Med 54:1305–1310. https://doi.org/10.1002/mrm.20696 |t Magn Reson Med |v 54 |y 2005 |
999 | C | 5 | |a 10.1097/RLI.0b013e31822836f6 |9 -- missing cx lookup -- |1 AM Nagel |p 759 - |2 Crossref |u Nagel AM, Amarteifio E, Lehmann-horn F, Jurkat-rott K (2011) 3 tesla sodium inversion recovery magnetic resonance imaging allows for improved visualization of intracellular sodium content changes in muscular channelopathies. Invest Radiol 46:759–766. https://doi.org/10.1097/RLI.0b013e31822836f6 |t Invest Radiol |v 46 |y 2011 |
999 | C | 5 | |a 10.1016/0022-2364(86)90180-0 |9 -- missing cx lookup -- |1 J Pekar |p 582 - |2 Crossref |u Pekar J, Leigh JS (1986) Detection of biexponential relaxation in sodium-23 facilitated by double-quantum filtering. J Magn Reson 69:582–584. https://doi.org/10.1016/0022-2364(86)90180-0 |t J Magn Reson |v 69 |y 1986 |
999 | C | 5 | |a 10.1063/1.451458 |9 -- missing cx lookup -- |1 G Jaccard |p 6282 - |2 Crossref |u Jaccard G, Wimperis S, Bodenhausen G (1986) Multiple-quantum NMR spectroscopy of S=3/2 spins in isotropic phase: a new probe for multiexponential relaxation. J Chem Phys 85:6282. https://doi.org/10.1063/1.451458 |t J Chem Phys |v 85 |y 1986 |
999 | C | 5 | |a 10.1002/jmri.26666 |9 -- missing cx lookup -- |1 MAU Hoesl |p 435 - |2 Crossref |u Hoesl MAU, Kleimaier D, Hu R et al (2019) 23 Na Triple-quantum signal of in vitro human liver cells, liposomes, and nanoparticles: cell viability assessment vs. separation of intra- and extracellular signal. J Magn Reson Imaging 50:435–444. https://doi.org/10.1002/jmri.26666 |t J Magn Reson Imaging |v 50 |y 2019 |
999 | C | 5 | |a 10.1002/mrm.1910290124 |9 -- missing cx lookup -- |1 LA Jelicks |p 130 - |2 Crossref |u Jelicks LA, Gupta RK (1993) On the extracellular contribution to multiple quantum filtered 23Na NMR of perfused rat heart. Magn Reson Med 29:130–133 |t Magn Reson Med |v 29 |y 1993 |
999 | C | 5 | |a 10.1111/j.1085-9489.2005.0010206.x |9 -- missing cx lookup -- |1 PJ Dyck |p 158 - |2 Crossref |u Dyck PJ, Boes CJ, Mulder D et al (2005) History of standard scoring, notation, and summation of neuromuscular signs. A current survey and recommendation. J Peripher Nerv Syst 10:158–173. https://doi.org/10.1111/j.1085-9489.2005.0010206.x |t J Peripher Nerv Syst |v 10 |y 2005 |
999 | C | 5 | |a 10.1002/mrm.1910180211 |9 -- missing cx lookup -- |1 GH Glover |p 371 - |2 Crossref |u Glover GH, Schneider E (1991) Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 18:371–383. https://doi.org/10.1002/mrm.1910180211 |t Magn Reson Med |v 18 |y 1991 |
999 | C | 5 | |a 10.1002/mrm.22157 |9 -- missing cx lookup -- |1 AM Nagel |p 1565 - |2 Crossref |u Nagel AM, Laun FB, Weber MA et al (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62:1565–1573. https://doi.org/10.1002/mrm.22157 |t Magn Reson Med |v 62 |y 2009 |
999 | C | 5 | |a 10.1002/(SICI)1522-2594(199912)42:6<1146::AID-MRM20>3.0.CO;2-S |9 -- missing cx lookup -- |1 I Hancu |p 1146 - |2 Crossref |u Hancu I, Boada F, Shen G (1999) Three-dimensional triple-quantum-filtered 23Na imaging of in vivo human brain. Magn Reson Med 42:1146–1154 |t Magn Reson Med |v 42 |y 1999 |
999 | C | 5 | |a 10.1002/nbm.4010 |9 -- missing cx lookup -- |1 LV Gast |p e4010 - |2 Crossref |u Gast LV, Gerhalter T, Hensel B et al (2018) Double quantum filtered 23Na MRI with magic angle excitation of human skeletal muscle in the presence of B0 and B1 inhomogeneities. NMR Biomed 31:e4010. https://doi.org/10.1002/nbm.4010 |t NMR Biomed |v 31 |y 2018 |
999 | C | 5 | |1 D Goutallier |y 1994 |2 Crossref |u Goutallier D, Postel JM, Bernageau J et al (1994) Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res 1:78–83 |
999 | C | 5 | |a 10.1093/hmg/ddy364 |9 -- missing cx lookup -- |1 LH Wang |p 476 - |2 Crossref |u Wang LH, Friedman SD, Shaw D et al (2019) MRI-informed muscle biopsies correlate MRI with pathology and DUX4 target gene expression in FSHD. Hum Mol Genet 28:476–486. https://doi.org/10.1093/hmg/ddy364 |t Hum Mol Genet |v 28 |y 2019 |
999 | C | 5 | |a 10.1002/jmri.24613 |9 -- missing cx lookup -- |1 N Azzabou |p 645 - |2 Crossref |u Azzabou N, Loureiro de Sousa P, Caldas E, Carlier PG (2015) Validation of a generic approach to muscle water T2 determination at 3T in fat-infiltrated skeletal muscle. J Magn Reson Imaging 41:645–653. https://doi.org/10.1002/jmri.24613 |t J Magn Reson Imaging |v 41 |y 2015 |
999 | C | 5 | |a 10.1148/radiol.13130757 |9 -- missing cx lookup -- |1 R Umathum |p 569 - |2 Crossref |u Umathum R, Rösler MB, Nagel AM (2013) In Vivo 39K MR imaging of human muscle and brain. Radiology 269:569–576. https://doi.org/10.1148/radiol.13130757 |t Radiology |v 269 |y 2013 |
999 | C | 5 | |a 10.1111/j.2517-6161.1995.tb02031.x |9 -- missing cx lookup -- |1 Y Benjamini |p 289 - |2 Crossref |u Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x |t J R Stat Soc Ser B |v 57 |y 1995 |
999 | C | 5 | |a 10.1159/000452763 |9 -- missing cx lookup -- |1 D Mair |p 32 - |2 Crossref |u Mair D, Huegens-Penzel M, Kress W et al (2017) Leg Muscle involvement in facioscapulohumeral muscular dystrophy: comparison between Facioscapulohumeral Muscular Dystrophy types 1 and 2. Eur Neurol 77:32–39. https://doi.org/10.1159/000452763 |t Eur Neurol |v 77 |y 2017 |
999 | C | 5 | |a 10.1002/nbm.1494 |9 -- missing cx lookup -- |1 HE Kan |p 563 - |2 Crossref |u Kan HE, Klomp DWJ, Wohlgemuth M et al (2010) Only fat infiltrated muscles in resting lower leg of FSHD patients show disturbed energy metabolism. NMR Biomed 23:563–568. https://doi.org/10.1002/nbm.1494 |t NMR Biomed |v 23 |y 2010 |
999 | C | 5 | |a 10.1016/j.nmd.2009.02.009 |9 -- missing cx lookup -- |1 HE Kan |p 357 - |2 Crossref |u Kan HE, Scheenen TWJ, Wohlgemuth M et al (2009) Quantitative MR imaging of individual muscle involvement in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 19:357–362. https://doi.org/10.1016/j.nmd.2009.02.009 |t Neuromuscul Disord |v 19 |y 2009 |
999 | C | 5 | |a 10.1007/s00415-006-0230-z |9 -- missing cx lookup -- |1 DB Olsen |p 1437 - |2 Crossref |u Olsen DB, Gideon P, Jeppesen TD, Vissing J (2006) Leg muscle involvement in facioscapulohumeral muscular dystrophy assessed by MRI. J Neurol 253:1437–1441. https://doi.org/10.1007/s00415-006-0230-z |t J Neurol |v 253 |y 2006 |
999 | C | 5 | |a 10.1371/journal.pone.0085416 |9 -- missing cx lookup -- |1 BH Janssen |p e85416 - |2 Crossref |u Janssen BH, Voet NBM, Nabuurs CI et al (2014) Distinct disease phases in muscles of facioscapulohumeral dystrophy patients identified by MR detected fat infiltration. PLoS ONE 9:e85416. https://doi.org/10.1371/journal.pone.0085416 |t PLoS ONE |v 9 |y 2014 |
999 | C | 5 | |a 10.1002/jcsm.12473 |9 -- missing cx lookup -- |1 M Monforte |p 1258 - |2 Crossref |u Monforte M, Laschena F, Ottaviani P et al (2019) Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging. J Cachexia Sarcopenia Muscle 10:1258–1265. https://doi.org/10.1002/jcsm.12473 |t J Cachexia Sarcopenia Muscle |v 10 |y 2019 |
999 | C | 5 | |a 10.1212/WNL.0000000000000775 |9 -- missing cx lookup -- |1 I Arpan |p 974 - |2 Crossref |u Arpan I, Willcocks RJ, Forbes SC et al (2014) Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology 83:974–980. https://doi.org/10.1212/WNL.0000000000000775 |t Neurology |v 83 |y 2014 |
999 | C | 5 | |a 10.1148/radiol.12110980 |9 -- missing cx lookup -- |1 E Amarteifio |p 154 - |2 Crossref |u Amarteifio E, Nagel AM, Weber M, Lehmann-horn F (2012) Hyperkalemic periodic paralysis and permanent weakness : 3-T overload — initial results. Radiology 264:154–163 |t Radiology |v 264 |y 2012 |
999 | C | 5 | |a 10.1002/nbm.687 |9 -- missing cx lookup -- |1 G Navon |p 112 - |2 Crossref |u Navon G, Shinar H, Eliav U, Seo Y (2001) Multiquantum filters and order in tissues. NMR Biomed 14:112–132 |t NMR Biomed |v 14 |y 2001 |
999 | C | 5 | |a 10.1002/mrm.1910390408 |9 -- missing cx lookup -- |1 VD Schepkin |p 557 - |2 Crossref |u Schepkin VD, Choy IO, Budinger TF et al (1998) Sodium TQF NMR and intracellular sodium in isolated crystalloid perfused rat heart. Magn Reson Med 39:557–563 |t Magn Reson Med |v 39 |y 1998 |
999 | C | 5 | |a 10.1002/mrm.1910300415 |9 -- missing cx lookup -- |1 G Navon |p 503 - |2 Crossref |u Navon G (1993) Complete elimination of the extracellular 23Na NMR signal in triple quantum filtered spectra of rat hearts in the presence of shift reagents. Magn Reson Med 30:503–506. https://doi.org/10.1002/mrm.1910300415 |t Magn Reson Med |v 30 |y 1993 |
999 | C | 5 | |a 10.1016/j.yjmcc.2015.07.009 |9 -- missing cx lookup -- |1 TR Eykyn |p 95 - |2 Crossref |u Eykyn TR, Aksentijević D, Aughton KL et al (2015) Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i. J Mol Cell Cardiol 86:95–101. https://doi.org/10.1016/j.yjmcc.2015.07.009 |t J Mol Cell Cardiol |v 86 |y 2015 |
999 | C | 5 | |a 10.1016/j.jmr.2014.01.007 |9 -- missing cx lookup -- |1 N Benkhedah |p 67 - |2 Crossref |u Benkhedah N, Bachert P, Nagel AM (2014) Two-pulse biexponential-weighted 23Na imaging. J Magn Reson 240:67–76. https://doi.org/10.1016/j.jmr.2014.01.007 |t J Magn Reson |v 240 |y 2014 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|