001     163998
005     20240229123202.0
024 7 _ |a 10.1158/0008-5472.CAN-20-1655
|2 doi
024 7 _ |a pmid:33046443
|2 pmid
024 7 _ |a 0008-5472
|2 ISSN
024 7 _ |a 0099-7013
|2 ISSN
024 7 _ |a 0099-7374
|2 ISSN
024 7 _ |a 1538-7445
|2 ISSN
024 7 _ |a altmetric:92342276
|2 altmetric
037 _ _ |a DKFZ-2020-02198
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Rusert, Jessica M
|b 0
245 _ _ |a Functional precision medicine identifies new therapeutic candidates for medulloblastoma.
260 _ _ |a Philadelphia, Pa.
|c 2020
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1608046760_11358
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2020 Dec 1;80(23):5393-5407
520 _ _ |a Medulloblastoma (MB) is among the most common malignant brain tumors in children. Recent studies have identified at least four subgroups of the disease that differ in terms of molecular characteristics and patient outcomes. Despite this heterogeneity, most MB patients receive similar therapies, including surgery, radiation, and intensive chemotherapy. Although these treatments prolong survival, many patients still die from the disease and survivors suffer severe long-term side effects from therapy. We hypothesize that each MB patient is sensitive to different therapies and that tailoring therapy based on the molecular and cellular characteristics of patient tumors will improve outcomes. To test this, we assembled a panel of orthotopic patient-derived xenografts (PDX) and subjected them to DNA sequencing, gene expression profiling, and high-throughput drug screening. Analysis of DNA sequencing revealed that most MB do not have actionable mutations that point to effective therapies. In contrast, gene expression and drug response data provided valuable information about potential therapies for every tumor. For example, drug screening demonstrated that actinomycin D, which is used for treatment of sarcoma but rarely for MB, was active against PDX representing Group 3 MB, the most aggressive form of the disease. Functional analysis of tumor cells was successfully used in a clinical setting to identify more treatment options than sequencing alone. These studies suggest that it should be possible to move away from a one-size-fits-all approach and begin to treat each patient with therapies that are effective against their specific tumor.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Juarez, Edwin F
|0 0000-0003-1062-3642
|b 1
700 1 _ |a Brabetz, Sebastian
|0 P:(DE-He78)b0b3740107f746e09dc23fdf25eb0629
|b 2
700 1 _ |a Jensen, James
|b 3
700 1 _ |a Garancher, Alexandra
|b 4
700 1 _ |a Chau, Lianne Q
|b 5
700 1 _ |a Tacheva-Grigorova, Silvia K
|b 6
700 1 _ |a Wahab, Sameerah
|b 7
700 1 _ |a Udaka, Yoko T
|b 8
700 1 _ |a Finlay, Darren
|0 0000-0002-8718-9453
|b 9
700 1 _ |a Seker-Cin, Huriye
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Reardon, Brendan
|b 11
700 1 _ |a Gröbner, Susanne
|0 P:(DE-He78)932918ed0e8d8790a81235528019a8e0
|b 12
700 1 _ |a Serrano, Jonathan
|b 13
700 1 _ |a Ecker, Jonas
|0 P:(DE-He78)3de637452ba900e2bdd359b8f41953bf
|b 14
|u dkfz
700 1 _ |a Qi, Lin
|b 15
700 1 _ |a Kogiso, Mari
|b 16
700 1 _ |a Du, Yuchen
|b 17
700 1 _ |a Baxter, Patricia A
|0 0000-0001-6955-7083
|b 18
700 1 _ |a Henderson, Jacob J
|b 19
700 1 _ |a Berens, Michael E
|0 0000-0002-3382-6787
|b 20
700 1 _ |a Vuori, Kristiina
|0 0000-0002-5657-0681
|b 21
700 1 _ |a Milde, Till
|0 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
|b 22
|u dkfz
700 1 _ |a Cho, Yoon-Jae
|b 23
700 1 _ |a Li, Xiao-Nan
|b 24
700 1 _ |a Olson, James M
|0 0000-0001-5990-6534
|b 25
700 1 _ |a Reyes, Iris
|b 26
700 1 _ |a Snuderl, Matija
|b 27
700 1 _ |a Wong, Terence C
|b 28
700 1 _ |a Dimmock, David P
|b 29
700 1 _ |a Nahas, Shareef A
|b 30
700 1 _ |a Malicki, Denise
|b 31
700 1 _ |a Crawford, John R
|0 0000-0002-4100-7001
|b 32
700 1 _ |a Levy, Michael L
|b 33
700 1 _ |a Van Allen, Eliezer M
|b 34
700 1 _ |a Pfister, Stefan
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 35
|u dkfz
700 1 _ |a Tamayo, Pablo
|b 36
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 37
|u dkfz
700 1 _ |a Mesirov, Jill P
|b 38
700 1 _ |a Wechsler-Reya, Robert J
|b 39
773 _ _ |a 10.1158/0008-5472.CAN-20-1655
|g p. canres.1655.2020 -
|0 PERI:(DE-600)2036785-5
|n 23
|p 5393-5407
|t Cancer research
|v 80
|y 2020
|x 1538-7445
909 C O |o oai:inrepo02.dkfz.de:163998
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)b0b3740107f746e09dc23fdf25eb0629
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)932918ed0e8d8790a81235528019a8e0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)3de637452ba900e2bdd359b8f41953bf
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 35
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 37
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER RES : 2018
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CANCER RES : 2018
|d 2020-01-12
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)B310-20160331
|k B310
|l KKE Pädiatrische Onkologie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B310-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21