001     164050
005     20240229133154.0
024 7 _ |a 10.1371/journal.pmed.1003394
|2 doi
024 7 _ |a pmid:33064751
|2 pmid
024 7 _ |a 1549-1277
|2 ISSN
024 7 _ |a 1549-1676
|2 ISSN
024 7 _ |a altmetric:92540022
|2 altmetric
037 _ _ |a DKFZ-2020-02218
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Zheng, Ju-Sheng
|0 0000-0001-6560-4890
|b 0
245 _ _ |a The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis.
260 _ _ |a Lawrence, Kan.
|c 2020
|b PLoS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1611213547_29169
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Prior research suggested a differential association of 25-hydroxyvitamin D (25(OH)D) metabolites with type 2 diabetes (T2D), with total 25(OH)D and 25(OH)D3 inversely associated with T2D, but the epimeric form (C3-epi-25(OH)D3) positively associated with T2D. Whether or not these observational associations are causal remains uncertain. We aimed to examine the potential causality of these associations using Mendelian randomisation (MR) analysis.We performed a meta-analysis of genome-wide association studies for total 25(OH)D (N = 120,618), 25(OH)D3 (N = 40,562), and C3-epi-25(OH)D3 (N = 40,562) in participants of European descent (European Prospective Investigation into Cancer and Nutrition [EPIC]-InterAct study, EPIC-Norfolk study, EPIC-CVD study, Ely study, and the SUNLIGHT consortium). We identified genetic variants for MR analysis to investigate the causal association of the 25(OH)D metabolites with T2D (including 80,983 T2D cases and 842,909 non-cases). We also estimated the observational association of 25(OH)D metabolites with T2D by performing random effects meta-analysis of results from previous studies and results from the EPIC-InterAct study. We identified 10 genetic loci associated with total 25(OH)D, 7 loci associated with 25(OH)D3 and 3 loci associated with C3-epi-25(OH)D3. Based on the meta-analysis of observational studies, each 1-standard deviation (SD) higher level of 25(OH)D was associated with a 20% lower risk of T2D (relative risk [RR]: 0.80; 95% CI 0.77, 0.84; p < 0.001), but a genetically predicted 1-SD increase in 25(OH)D was not significantly associated with T2D (odds ratio [OR]: 0.96; 95% CI 0.89, 1.03; p = 0.23); this result was consistent across sensitivity analyses. In EPIC-InterAct, 25(OH)D3 (per 1-SD) was associated with a lower risk of T2D (RR: 0.81; 95% CI 0.77, 0.86; p < 0.001), while C3-epi-25(OH)D3 (above versus below lower limit of quantification) was positively associated with T2D (RR: 1.12; 95% CI 1.03, 1.22; p = 0.006), but neither 25(OH)D3 (OR: 0.97; 95% CI 0.93, 1.01; p = 0.14) nor C3-epi-25(OH)D3 (OR: 0.98; 95% CI 0.93, 1.04; p = 0.53) was causally associated with T2D risk in the MR analysis. Main limitations include the lack of a non-linear MR analysis and of the generalisability of the current findings from European populations to other populations of different ethnicities.Our study found discordant associations of biochemically measured and genetically predicted differences in blood 25(OH)D with T2D risk. The findings based on MR analysis in a large sample of European ancestry do not support a causal association of total 25(OH)D or 25(OH)D metabolites with T2D and argue against the use of vitamin D supplementation for the prevention of T2D.
536 _ _ |a 323 - Metabolic Dysfunction as Risk Factor (POF3-323)
|0 G:(DE-HGF)POF3-323
|c POF3-323
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Luan, Jian'an
|b 1
700 1 _ |a Sofianopoulou, Eleni
|b 2
700 1 _ |a Sharp, Stephen J
|0 0000-0003-2375-1440
|b 3
700 1 _ |a Day, Felix R
|0 0000-0003-3789-7651
|b 4
700 1 _ |a Imamura, Fumiaki
|b 5
700 1 _ |a Gundersen, Thomas E
|b 6
700 1 _ |a Lotta, Luca A
|b 7
700 1 _ |a Sluijs, Ivonne
|0 0000-0001-7758-4911
|b 8
700 1 _ |a Stewart, Isobel D
|b 9
700 1 _ |a Shah, Rupal L
|0 0000-0001-8789-8869
|b 10
700 1 _ |a van der Schouw, Yvonne T
|0 0000-0002-4605-435X
|b 11
700 1 _ |a Wheeler, Eleanor
|b 12
700 1 _ |a Ardanaz, Eva
|b 13
700 1 _ |a Boeing, Heiner
|b 14
700 1 _ |a Dorronsoro, Miren
|b 15
700 1 _ |a Dahm, Christina C
|0 0000-0003-0481-2893
|b 16
700 1 _ |a Dimou, Niki
|0 0000-0003-1678-9328
|b 17
700 1 _ |a El-Fatouhi, Douae
|b 18
700 1 _ |a Franks, Paul W
|0 0000-0002-0520-7604
|b 19
700 1 _ |a Fagherazzi, Guy
|0 0000-0001-5033-5966
|b 20
700 1 _ |a Grioni, Sara
|b 21
700 1 _ |a Huerta, José María
|0 0000-0002-9637-3869
|b 22
700 1 _ |a Heath, Alicia K
|0 0000-0001-6517-1300
|b 23
700 1 _ |a Hansen, Louise
|0 0000-0002-7109-8864
|b 24
700 1 _ |a Jenab, Mazda
|0 0000-0002-0573-1852
|b 25
700 1 _ |a Jakszyn, Paula
|b 26
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 27
|u dkfz
700 1 _ |a Kühn, Tilman
|0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
|b 28
|u dkfz
700 1 _ |a Khaw, Kay-Tee
|b 29
700 1 _ |a Laouali, Nasser
|0 0000-0002-8532-456X
|b 30
700 1 _ |a Masala, Giovanna
|0 0000-0002-5758-9069
|b 31
700 1 _ |a Nilsson, Peter M
|b 32
700 1 _ |a Overvad, Kim
|b 33
700 1 _ |a Olsen, Anja
|0 0000-0003-4788-503X
|b 34
700 1 _ |a Panico, Salvatore
|b 35
700 1 _ |a Quirós, J Ramón
|b 36
700 1 _ |a Rolandsson, Olov
|b 37
700 1 _ |a Rodríguez-Barranco, Miguel
|0 0000-0002-9972-9779
|b 38
700 1 _ |a Sacerdote, Carlotta
|0 0000-0002-8008-5096
|b 39
700 1 _ |a Spijkerman, Annemieke M W
|b 40
700 1 _ |a Tong, Tammy Y N
|0 0000-0002-0284-8959
|b 41
700 1 _ |a Tumino, Rosario
|0 0000-0003-2666-414X
|b 42
700 1 _ |a Tsilidis, Konstantinos K
|0 0000-0002-8452-8472
|b 43
700 1 _ |a Danesh, John
|b 44
700 1 _ |a Riboli, Elio
|0 0000-0001-6795-6080
|b 45
700 1 _ |a Butterworth, Adam S
|b 46
700 1 _ |a Langenberg, Claudia
|0 0000-0002-5017-7344
|b 47
700 1 _ |a Forouhi, Nita G
|0 0000-0002-5041-248X
|b 48
700 1 _ |a Wareham, Nicholas J
|0 0000-0003-1422-2993
|b 49
773 _ _ |a 10.1371/journal.pmed.1003394
|g Vol. 17, no. 10, p. e1003394 -
|0 PERI:(DE-600)2164823-2
|n 10
|p e1003394 -
|t PLoS medicine
|v 17
|y 2020
|x 1549-1676
909 C O |p VDB
|o oai:inrepo02.dkfz.de:164050
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 27
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 28
|6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe
913 1 _ |a DE-HGF
|b Gesundheit
|l Herz-Kreislauf-Stoffwechselerkrankungen
|1 G:(DE-HGF)POF3-320
|0 G:(DE-HGF)POF3-323
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Metabolic Dysfunction as Risk Factor
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS MED : 2018
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-02-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-02-27
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-02-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-02-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b PLOS MED : 2018
|d 2020-02-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-02-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-02-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-02-27
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21