000164053 001__ 164053
000164053 005__ 20240229133512.0
000164053 0247_ $$2doi$$a10.1093/bib/bbaa230
000164053 0247_ $$2pmid$$apmid:33063116
000164053 0247_ $$2ISSN$$a1467-5463
000164053 0247_ $$2ISSN$$a1477-4054
000164053 0247_ $$2altmetric$$aaltmetric:100213399
000164053 037__ $$aDKFZ-2020-02221
000164053 041__ $$aeng
000164053 082__ $$a004
000164053 1001_ $$0P:(DE-He78)9e2b4e6534d883b8808221c71e206367$$aDeutelmoser, Heike$$b0$$eFirst author$$udkfz
000164053 245__ $$aRobust Huber-LASSO for improved prediction of protein, metabolite and gene expression levels relying on individual genotype data.
000164053 260__ $$aOxford [u.a.]$$bOxford University Press$$c2021
000164053 3367_ $$2DRIVER$$aarticle
000164053 3367_ $$2DataCite$$aOutput Types/Journal article
000164053 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637224571_29527$$xReview Article
000164053 3367_ $$2BibTeX$$aARTICLE
000164053 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164053 3367_ $$00$$2EndNote$$aJournal Article
000164053 500__ $$a#EA:C120#
000164053 520__ $$aLeast absolute shrinkage and selection operator (LASSO) regression is often applied to select the most promising set of single nucleotide polymorphisms (SNPs) associated with a molecular phenotype of interest. While the penalization parameter λ restricts the number of selected SNPs and the potential model overfitting, the least-squares loss function of standard LASSO regression translates into a strong dependence of statistical results on a small number of individuals with phenotypes or genotypes divergent from the majority of the study population-typically comprised of outliers and high-leverage observations. Robust methods have been developed to constrain the influence of divergent observations and generate statistical results that apply to the bulk of study data, but they have rarely been applied to genetic association studies. In this article, we review, for newcomers to the field of robust statistics, a novel version of standard LASSO that utilizes the Huber loss function. We conduct comprehensive simulations and analyze real protein, metabolite, mRNA expression and genotype data to compare the stability of penalization, the cross-iteration concordance of the model, the false-positive and true-positive rates and the prediction accuracy of standard and robust Huber-LASSO. Although the two methods showed controlled false-positive rates ≤2.1% and similar true-positive rates, robust Huber-LASSO outperformed standard LASSO in the accuracy of predicted protein, metabolite and gene expression levels using individual SNP data. The conducted simulations and real-data analyses show that robust Huber-LASSO represents a valuable alternative to standard LASSO in genetic studies of molecular phenotypes.
000164053 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000164053 588__ $$aDataset connected to CrossRef, PubMed,
000164053 7001_ $$aScherer, Dominique$$b1
000164053 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b2
000164053 7001_ $$aWaldenberger, Melanie$$b3
000164053 7001_ $$astudy, INTERVAL$$b4$$eCollaboration Author
000164053 7001_ $$aSuhre, Karsten$$b5
000164053 7001_ $$aKastenmüller, Gabi$$b6
000164053 7001_ $$aLorenzo Bermejo, Justo$$b7
000164053 773__ $$0PERI:(DE-600)2036055-1$$a10.1093/bib/bbaa230$$gp. bbaa230$$n4$$pbbaa230$$tBriefings in bioinformatics$$v22$$x1477-4054$$y2021
000164053 909CO $$ooai:inrepo02.dkfz.de:164053$$pVDB
000164053 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9e2b4e6534d883b8808221c71e206367$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000164053 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000164053 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000164053 9130_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000164053 9141_ $$y2021
000164053 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-16$$wger
000164053 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRIEF BIOINFORM : 2018$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000164053 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRIEF BIOINFORM : 2018$$d2020-01-16
000164053 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x0
000164053 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x1
000164053 980__ $$ajournal
000164053 980__ $$aVDB
000164053 980__ $$aI:(DE-He78)C120-20160331
000164053 980__ $$aI:(DE-He78)C070-20160331
000164053 980__ $$aUNRESTRICTED