001     164053
005     20240229133512.0
024 7 _ |a 10.1093/bib/bbaa230
|2 doi
024 7 _ |a pmid:33063116
|2 pmid
024 7 _ |a 1467-5463
|2 ISSN
024 7 _ |a 1477-4054
|2 ISSN
024 7 _ |a altmetric:100213399
|2 altmetric
037 _ _ |a DKFZ-2020-02221
041 _ _ |a eng
082 _ _ |a 004
100 1 _ |a Deutelmoser, Heike
|0 P:(DE-He78)9e2b4e6534d883b8808221c71e206367
|b 0
|e First author
|u dkfz
245 _ _ |a Robust Huber-LASSO for improved prediction of protein, metabolite and gene expression levels relying on individual genotype data.
260 _ _ |a Oxford [u.a.]
|c 2021
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637224571_29527
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C120#
520 _ _ |a Least absolute shrinkage and selection operator (LASSO) regression is often applied to select the most promising set of single nucleotide polymorphisms (SNPs) associated with a molecular phenotype of interest. While the penalization parameter λ restricts the number of selected SNPs and the potential model overfitting, the least-squares loss function of standard LASSO regression translates into a strong dependence of statistical results on a small number of individuals with phenotypes or genotypes divergent from the majority of the study population-typically comprised of outliers and high-leverage observations. Robust methods have been developed to constrain the influence of divergent observations and generate statistical results that apply to the bulk of study data, but they have rarely been applied to genetic association studies. In this article, we review, for newcomers to the field of robust statistics, a novel version of standard LASSO that utilizes the Huber loss function. We conduct comprehensive simulations and analyze real protein, metabolite, mRNA expression and genotype data to compare the stability of penalization, the cross-iteration concordance of the model, the false-positive and true-positive rates and the prediction accuracy of standard and robust Huber-LASSO. Although the two methods showed controlled false-positive rates ≤2.1% and similar true-positive rates, robust Huber-LASSO outperformed standard LASSO in the accuracy of predicted protein, metabolite and gene expression levels using individual SNP data. The conducted simulations and real-data analyses show that robust Huber-LASSO represents a valuable alternative to standard LASSO in genetic studies of molecular phenotypes.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Scherer, Dominique
|b 1
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 2
700 1 _ |a Waldenberger, Melanie
|b 3
700 1 _ |a study, INTERVAL
|b 4
|e Collaboration Author
700 1 _ |a Suhre, Karsten
|b 5
700 1 _ |a Kastenmüller, Gabi
|b 6
700 1 _ |a Lorenzo Bermejo, Justo
|b 7
773 _ _ |a 10.1093/bib/bbaa230
|g p. bbaa230
|0 PERI:(DE-600)2036055-1
|n 4
|p bbaa230
|t Briefings in bioinformatics
|v 22
|y 2021
|x 1477-4054
909 C O |p VDB
|o oai:inrepo02.dkfz.de:164053
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)9e2b4e6534d883b8808221c71e206367
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRIEF BIOINFORM : 2018
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BRIEF BIOINFORM : 2018
|d 2020-01-16
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21