000164057 001__ 164057
000164057 005__ 20240229123204.0
000164057 0247_ $$2doi$$a10.1186/s12874-020-01133-5
000164057 0247_ $$2pmid$$apmid:33059585
000164057 0247_ $$2ISSN$$a1471-2288
000164057 0247_ $$2ISSN$$a1547-0105
000164057 0247_ $$2altmetric$$aaltmetric:92432332
000164057 037__ $$aDKFZ-2020-02225
000164057 041__ $$aeng
000164057 082__ $$a610
000164057 1001_ $$0P:(DE-He78)34ad9f967b71b1438cf5490a115c02d2$$aKnoll, Maximilian$$b0$$eFirst author$$udkfz
000164057 245__ $$aAn R package for an integrated evaluation of statistical approaches to cancer incidence projection.
000164057 260__ $$aHeidelberg$$bSpringer$$c2020
000164057 3367_ $$2DRIVER$$aarticle
000164057 3367_ $$2DataCite$$aOutput Types/Journal article
000164057 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1683810089_11660
000164057 3367_ $$2BibTeX$$aARTICLE
000164057 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164057 3367_ $$00$$2EndNote$$aJournal Article
000164057 500__ $$a#EA:E050#LA:C070#
000164057 520__ $$aProjection of future cancer incidence is an important task in cancer epidemiology. The results are of interest also for biomedical research and public health policy. Age-Period-Cohort (APC) models, usually based on long-term cancer registry data (> 20 yrs), are established for such projections. In many countries (including Germany), however, nationwide long-term data are not yet available. General guidance on statistical approaches for projections using rather short-term data is challenging and software to enable researchers to easily compare approaches is lacking.To enable a comparative analysis of the performance of statistical approaches to cancer incidence projection, we developed an R package (incAnalysis), supporting in particular Bayesian models fitted by Integrated Nested Laplace Approximations (INLA). Its use is demonstrated by an extensive empirical evaluation of operating characteristics (bias, coverage and precision) of potentially applicable models differing by complexity. Observed long-term data from three cancer registries (SEER-9, NORDCAN, Saarland) was used for benchmarking.Overall, coverage was high (mostly > 90%) for Bayesian APC models (BAPC), whereas less complex models showed differences in coverage dependent on projection-period. Intercept-only models yielded values below 20% for coverage. Bias increased and precision decreased for longer projection periods (> 15 years) for all except intercept-only models. Precision was lowest for complex models such as BAPC models, generalized additive models with multivariate smoothers and generalized linear models with age x period interaction effects.The incAnalysis R package allows a straightforward comparison of cancer incidence rate projection approaches. Further detailed and targeted investigations into model performance in addition to the presented empirical results are recommended to derive guidance on appropriate statistical projection methods in a given setting.
000164057 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000164057 588__ $$aDataset connected to CrossRef, PubMed,
000164057 7001_ $$0P:(DE-He78)29a9699ac2fa63f7c76560332aeac76c$$aFurkel, Jennifer$$b1$$udkfz
000164057 7001_ $$0P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDebus, Jürgen$$b2$$udkfz
000164057 7001_ $$0P:(DE-He78)360c5bc2b71a849e35aca747c041dda7$$aAbdollahi, Amir$$b3$$udkfz
000164057 7001_ $$aKarch, André$$b4
000164057 7001_ $$0P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91$$aStock, Christian$$b5$$eLast author
000164057 773__ $$0PERI:(DE-600)2041362-2$$a10.1186/s12874-020-01133-5$$gVol. 20, no. 1, p. 257$$n1$$p257$$tBMC medical research methodology$$v20$$x1471-2288$$y2020
000164057 909CO $$ooai:inrepo02.dkfz.de:164057$$pVDB
000164057 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)34ad9f967b71b1438cf5490a115c02d2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000164057 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29a9699ac2fa63f7c76560332aeac76c$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000164057 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000164057 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)360c5bc2b71a849e35aca747c041dda7$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000164057 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)908880209a64ea539ae8dc5fdb7e0a91$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000164057 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000164057 9141_ $$y2020
000164057 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC MED RES METHODOL : 2018$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2019-12-20
000164057 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2019-12-20
000164057 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2019-12-20
000164057 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000164057 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x0
000164057 9201_ $$0I:(DE-He78)E210-20160331$$kE210$$lE210 KKE Translationale Radioonkologie$$x1
000164057 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000164057 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x3
000164057 9200_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x0
000164057 980__ $$ajournal
000164057 980__ $$aVDB
000164057 980__ $$aI:(DE-He78)E050-20160331
000164057 980__ $$aI:(DE-He78)E210-20160331
000164057 980__ $$aI:(DE-He78)HD01-20160331
000164057 980__ $$aI:(DE-He78)C070-20160331
000164057 980__ $$aUNRESTRICTED