000164060 001__ 164060
000164060 005__ 20240229133512.0
000164060 0247_ $$2doi$$a10.1002/bimj.202000087
000164060 0247_ $$2pmid$$apmid:33058202
000164060 0247_ $$2ISSN$$a0006-3452
000164060 0247_ $$2ISSN$$a0323-3847
000164060 0247_ $$2ISSN$$a1521-4036
000164060 037__ $$aDKFZ-2020-02228
000164060 041__ $$aeng
000164060 082__ $$a570
000164060 1001_ $$0P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aHolland-Letz, Tim$$b0$$eFirst author$$udkfz
000164060 245__ $$aThe design heatmap: A simple visualization of D -optimality design problems.
000164060 260__ $$aBerlin$$bWiley-VCH$$c2020
000164060 3367_ $$2DRIVER$$aarticle
000164060 3367_ $$2DataCite$$aOutput Types/Journal article
000164060 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642583096_1941
000164060 3367_ $$2BibTeX$$aARTICLE
000164060 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164060 3367_ $$00$$2EndNote$$aJournal Article
000164060 500__ $$a#EA:C060#LA:C060# / Volume62, Issue 8 December 2020 Pages 2013-2031
000164060 520__ $$aOptimal experimental designs are often formal and specific, and not intuitively plausible to practical experimenters. However, even in theory, there often are many different possible design points providing identical or nearly identical information compared to the design points of a strictly optimal design. In practical applications, this can be used to find designs that are a compromise between mathematical optimality and practical requirements, including preferences of experimenters. For this purpose, we propose a derivative-based two-dimensional graphical representation of the design space that, given any optimal design is already known, will show which areas of the design space are relevant for good designs and how these areas relate to each other. While existing equivalence theorems already allow such an illustration in regard to the relevance of design points only, our approach also shows whether different design points contribute the same kind of information, and thus allows tweaking of designs for practical applications, especially in regard to the splitting and combining of design points. We demonstrate the approach on a toxicological trial where a D -optimal design for a dose-response experiment modeled by a four-parameter log-logistic function was requested. As these designs require a prior estimate of the relevant parameters, which is difficult to obtain in a practical situation, we also discuss an adaption of our representations to the criterion of Bayesian D -optimality. While we focus on D -optimality, the approach is in principle applicable to different optimality criteria as well. However, much of the computational and graphical simplicity will be lost.
000164060 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000164060 588__ $$aDataset connected to CrossRef, PubMed,
000164060 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b1$$eLast author$$udkfz
000164060 773__ $$0PERI:(DE-600)1479920-0$$a10.1002/bimj.202000087$$gp. bimj.202000087$$n8$$p2013-2031$$tBiometrical journal$$v62$$x1521-4036$$y2020
000164060 909CO $$ooai:inrepo02.dkfz.de:164060$$pVDB
000164060 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000164060 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000164060 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000164060 9141_ $$y2021
000164060 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000164060 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000164060 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000164060 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000164060 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000164060 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000164060 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000164060 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000164060 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-26
000164060 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-26
000164060 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOMETRICAL J : 2018$$d2020-02-26
000164060 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000164060 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000164060 980__ $$ajournal
000164060 980__ $$aVDB
000164060 980__ $$aI:(DE-He78)C060-20160331
000164060 980__ $$aUNRESTRICTED