001     164060
005     20240229133512.0
024 7 _ |a 10.1002/bimj.202000087
|2 doi
024 7 _ |a pmid:33058202
|2 pmid
024 7 _ |a 0006-3452
|2 ISSN
024 7 _ |a 0323-3847
|2 ISSN
024 7 _ |a 1521-4036
|2 ISSN
037 _ _ |a DKFZ-2020-02228
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Holland-Letz, Tim
|0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|b 0
|e First author
|u dkfz
245 _ _ |a The design heatmap: A simple visualization of D -optimality design problems.
260 _ _ |a Berlin
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642583096_1941
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C060#LA:C060# / Volume62, Issue 8 December 2020 Pages 2013-2031
520 _ _ |a Optimal experimental designs are often formal and specific, and not intuitively plausible to practical experimenters. However, even in theory, there often are many different possible design points providing identical or nearly identical information compared to the design points of a strictly optimal design. In practical applications, this can be used to find designs that are a compromise between mathematical optimality and practical requirements, including preferences of experimenters. For this purpose, we propose a derivative-based two-dimensional graphical representation of the design space that, given any optimal design is already known, will show which areas of the design space are relevant for good designs and how these areas relate to each other. While existing equivalence theorems already allow such an illustration in regard to the relevance of design points only, our approach also shows whether different design points contribute the same kind of information, and thus allows tweaking of designs for practical applications, especially in regard to the splitting and combining of design points. We demonstrate the approach on a toxicological trial where a D -optimal design for a dose-response experiment modeled by a four-parameter log-logistic function was requested. As these designs require a prior estimate of the relevant parameters, which is difficult to obtain in a practical situation, we also discuss an adaption of our representations to the criterion of Bayesian D -optimality. While we focus on D -optimality, the approach is in principle applicable to different optimality criteria as well. However, much of the computational and graphical simplicity will be lost.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 1
|e Last author
|u dkfz
773 _ _ |a 10.1002/bimj.202000087
|g p. bimj.202000087
|0 PERI:(DE-600)1479920-0
|n 8
|p 2013-2031
|t Biometrical journal
|v 62
|y 2020
|x 1521-4036
909 C O |p VDB
|o oai:inrepo02.dkfz.de:164060
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOMETRICAL J : 2018
|d 2020-02-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-26
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21