000164063 001__ 164063
000164063 005__ 20240229123204.0
000164063 0247_ $$2doi$$a10.1016/j.celrep.2020.108256
000164063 0247_ $$2pmid$$apmid:33053356
000164063 0247_ $$2ISSN$$a2211-1247
000164063 0247_ $$2ISSN$$a2639-1856
000164063 0247_ $$2altmetric$$aaltmetric:92325037
000164063 037__ $$aDKFZ-2020-02231
000164063 041__ $$aeng
000164063 082__ $$a610
000164063 1001_ $$0P:(DE-He78)3f238cb47096916308d99eabbce682e9$$aDi Marco, Barbara$$b0$$eFirst author$$udkfz
000164063 245__ $$aReciprocal Interaction between Vascular Filopodia and Neural Stem Cells Shapes Neurogenesis in the Ventral Telencephalon.
000164063 260__ $$a[New York, NY]$$bElsevier$$c2020
000164063 3367_ $$2DRIVER$$aarticle
000164063 3367_ $$2DataCite$$aOutput Types/Journal article
000164063 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603284722_26778
000164063 3367_ $$2BibTeX$$aARTICLE
000164063 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164063 3367_ $$00$$2EndNote$$aJournal Article
000164063 500__ $$a#EA:A231#LA:A231#
000164063 520__ $$aAngiogenesis and neurogenesis are tightly coupled during embryonic brain development. However, little is known about how these two processes interact. We show that nascent blood vessels actively contact dividing neural stem cells by endothelial filopodia in the ventricular zone (VZ) of the murine ventral telencephalon; this association is conserved in the human ventral VZ. Using mouse mutants with altered vascular filopodia density, we show that this interaction leads to prolonged cell cycle of apical neural progenitors (ANPs) and favors early neuronal differentiation. Interestingly, pharmacological experiments reveal that ANPs induce vascular filopodia formation by upregulating vascular endothelial growth factor (VEGF)-A in a cell-cycle-dependent manner. This mutual relationship between vascular filopodia and ANPs works as a self-regulatory system that senses ANP proliferation rates and rapidly adjusts neuronal production levels. Our findings indicate a function of vascular filopodia in fine-tuning neural stem cell behavior, which is the basis for proper brain development.
000164063 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000164063 588__ $$aDataset connected to CrossRef, PubMed,
000164063 7001_ $$aCrouch, Elizabeth E$$b1
000164063 7001_ $$aShah, Bhavin$$b2
000164063 7001_ $$0P:(DE-He78)f6dee6ab99c48e6c77bd0817628c3f71$$aDuman, Ceren$$b3$$udkfz
000164063 7001_ $$aParedes, Mercedes F$$b4
000164063 7001_ $$aRuiz de Almodovar, Carmen$$b5
000164063 7001_ $$aHuang, Eric J$$b6
000164063 7001_ $$0P:(DE-He78)3f128e570b3a9009d7b52a0523af43dd$$aAlfonso, Julieta$$b7$$eLast author$$udkfz
000164063 773__ $$0PERI:(DE-600)2649101-1$$a10.1016/j.celrep.2020.108256$$gVol. 33, no. 2, p. 108256 -$$n2$$p108256$$tCell reports$$v33$$x2211-1247$$y2020
000164063 909CO $$ooai:inrepo02.dkfz.de:164063$$pVDB
000164063 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3f238cb47096916308d99eabbce682e9$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000164063 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f6dee6ab99c48e6c77bd0817628c3f71$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000164063 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3f128e570b3a9009d7b52a0523af43dd$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000164063 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000164063 9141_ $$y2020
000164063 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP : 2018$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-17
000164063 915__ $$0LIC:(DE-HGF)CCBYNCNDNV$$2V:(DE-HGF)$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version)$$bDOAJ$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP : 2018$$d2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-17
000164063 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-17
000164063 9201_ $$0I:(DE-He78)A231-20160331$$kA231$$lA231 AG Alfonso$$x0
000164063 980__ $$ajournal
000164063 980__ $$aVDB
000164063 980__ $$aI:(DE-He78)A231-20160331
000164063 980__ $$aUNRESTRICTED