000164172 001__ 164172
000164172 005__ 20240229123206.0
000164172 0247_ $$2doi$$a10.1088/1361-6560/aba6d7
000164172 0247_ $$2pmid$$apmid:33104524
000164172 0247_ $$2ISSN$$a0031-9155
000164172 0247_ $$2ISSN$$a1361-6560
000164172 037__ $$aDKFZ-2020-02301
000164172 041__ $$aeng
000164172 082__ $$a530
000164172 1001_ $$0P:(DE-He78)8918404541688dee7976f7546be900fe$$aSchwahofer, Andrea$$b0$$eFirst author$$udkfz
000164172 245__ $$aOn the feasibility of absolute 3D dosimetry using LiF thermoluminescence detectors and polymer gels on a 0.35T MR-LINAC.
000164172 260__ $$aBristol$$bIOP Publ.$$c2020
000164172 3367_ $$2DRIVER$$aarticle
000164172 3367_ $$2DataCite$$aOutput Types/Journal article
000164172 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604064622_17730
000164172 3367_ $$2BibTeX$$aARTICLE
000164172 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000164172 3367_ $$00$$2EndNote$$aJournal Article
000164172 500__ $$a#EA:E040#LA:E040#
000164172 520__ $$aAs shown in our previous study, highly accurate absolute dosimetry in 3D is feasible by combining polymer gels (PG) with thermoluminescence dosimetry (TLD). In this setup, the thermoluminescence (TL)-based point dose information is used to renormalize the PG. This new PG-TLD reference system is now extended to measurements in magnetic fields.Experiments were carried out on a conventional 6 MV linear accelerator (LINAC) and a 6 MV 0.35 T magnetic resonance (MR)-LINAC. Signal stability of TLD600 and TLD700 was examined without and with magnetic field. Afterwards, the combination of PAGAT PG and TL detectors was employed within a cylindrical phantom in presence of the magnetic field. Two scenarios were tested: (I) an air-filled phantom and (II) a water-filled phantom. For each scenario, two plans were irradiated: (a) opposed beams with a field size of 10 × 10 cm2 and (b) a 3D conformal plan assuring homogeneous target coverage using three equally distributed coplanar beams.Mean relative uncertainty of TL calibration reproducibility for TLD600/TLD700 was 0.49%/0.85% at the MR-LINAC and 0.48%/0.83% for the conventional LINAC. Individual TL calibration coefficients of TLD600 and TLD700 behaved differently in the presence of the magnetic field. An average difference of (3.29 ± 0.89)% occurred for all TLD600, whereas the result for TLD700 is not quite as clear with (1.09 ± 0.89)% after excluding some outliers. Using the TL dose information for PG renormalization, high 3D gamma passing rates were achieved using the 3%/2 mm criteria: 91.0% (Ia), 92.6% (Ib), 94.3% (IIa), 97.4% (IIb).This study shows that TL signal reproducibility is not affected by a low magnetic field. Nevertheless, absolute calibration coefficients of the individual detectors indicate a dependency on the magnetic field. Hence, a calibration at the appropriate LINAC type is recommended. Furthermore, the previously established renormalization method for PG was applied to measurements at a MR-LINAC and was verified as suitable for evaluations of homogeneous dose distribution in the target volume.
000164172 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000164172 588__ $$aDataset connected to CrossRef, PubMed,
000164172 7001_ $$0P:(DE-He78)d26409e0d07007daf771142a945102ef$$aMann, P.$$b1$$udkfz
000164172 7001_ $$0P:(DE-He78)68622f6bdd6a5e6841631a06e4a67f7e$$aSpindeldreier, C. K.$$b2
000164172 7001_ $$0P:(DE-HGF)0$$aKarger, C. P.$$b3$$eLast author
000164172 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/aba6d7$$gVol. 65, no. 21, p. 215002 -$$n21$$p215002$$tPhysics in medicine and biology$$v65$$x1361-6560$$y2020
000164172 909CO $$ooai:inrepo02.dkfz.de:164172$$pVDB
000164172 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8918404541688dee7976f7546be900fe$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000164172 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d26409e0d07007daf771142a945102ef$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000164172 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000164172 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000164172 9141_ $$y2020
000164172 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-27$$wger
000164172 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-02-27$$wger
000164172 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2018$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-27
000164172 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-27
000164172 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000164172 980__ $$ajournal
000164172 980__ $$aVDB
000164172 980__ $$aI:(DE-He78)E040-20160331
000164172 980__ $$aUNRESTRICTED