001     164261
005     20240229133513.0
024 7 _ |a 10.1016/j.kint.2020.09.030
|2 doi
024 7 _ |a pmid:33137338
|2 pmid
024 7 _ |a 0085-2538
|2 ISSN
024 7 _ |a 1523-1755
|2 ISSN
024 7 _ |a 2157-1716
|2 ISSN
024 7 _ |a 2157-1724
|2 ISSN
024 7 _ |a altmetric:93653725
|2 altmetric
037 _ _ |a DKFZ-2020-02347
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Gorski, Mathias
|b 0
245 _ _ |a Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.
260 _ _ |a New York, NY
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1617964351_25638
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Apr;99(4):926-939
520 _ _ |a Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ('Rapid3'; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ('CKDi25'; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Jung, Bettina
|b 1
700 1 _ |a Li, Yong
|b 2
700 1 _ |a Matias-Garcia, Pamela R
|b 3
700 1 _ |a Wuttke, Matthias
|b 4
700 1 _ |a Coassin, Stefan
|b 5
700 1 _ |a Thio, Chris H L
|b 6
700 1 _ |a Kleber, Marcus E
|b 7
700 1 _ |a Winkler, Thomas W
|b 8
700 1 _ |a Wanner, Veronika
|b 9
700 1 _ |a Chai, Jin-Fang
|b 10
700 1 _ |a Chu, Audrey Y
|b 11
700 1 _ |a Cocca, Massimiliano
|b 12
700 1 _ |a Feitosa, Mary F
|b 13
700 1 _ |a Ghasemi, Sahar
|b 14
700 1 _ |a Hoppmann, Anselm
|b 15
700 1 _ |a Horn, Katrin
|b 16
700 1 _ |a Li, Man
|b 17
700 1 _ |a Nutile, Teresa
|b 18
700 1 _ |a Scholz, Markus
|b 19
700 1 _ |a Sieber, Karsten B
|b 20
700 1 _ |a Teumer, Alexander
|b 21
700 1 _ |a Tin, Adrienne
|b 22
700 1 _ |a Wang, Judy
|b 23
700 1 _ |a Tayo, Bamidele O
|b 24
700 1 _ |a Ahluwalia, Tarunveer S
|b 25
700 1 _ |a Almgren, Peter
|b 26
700 1 _ |a Bakker, Stephan J L
|b 27
700 1 _ |a Banas, Bernhard
|b 28
700 1 _ |a Bansal, Nisha
|b 29
700 1 _ |a Biggs, Mary L
|b 30
700 1 _ |a Boerwinkle, Eric
|b 31
700 1 _ |a Bottinger, Erwin P
|b 32
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 33
|u dkfz
700 1 _ |a Carroll, Robert J
|b 34
700 1 _ |a Chalmers, John
|b 35
700 1 _ |a Chee, Miao-Li
|b 36
700 1 _ |a Chee, Miao-Ling
|b 37
700 1 _ |a Cheng, Ching-Yu
|b 38
700 1 _ |a Coresh, Josef
|b 39
700 1 _ |a de Borst, Martin H
|b 40
700 1 _ |a Degenhardt, Frauke
|b 41
700 1 _ |a Eckardt, Kai-Uwe
|b 42
700 1 _ |a Endlich, Karlhans
|b 43
700 1 _ |a Franke, Andre
|b 44
700 1 _ |a Freitag-Wolf, Sandra
|b 45
700 1 _ |a Gampawar, Piyush
|b 46
700 1 _ |a Gansevoort, Ron T
|b 47
700 1 _ |a Ghanbari, Mohsen
|b 48
700 1 _ |a Gieger, Christian
|b 49
700 1 _ |a Hamet, Pavel
|b 50
700 1 _ |a Ho, Kevin
|b 51
700 1 _ |a Hofer, Edith
|b 52
700 1 _ |a Holleczek, Bernd
|0 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
|b 53
|u dkfz
700 1 _ |a Xian Foo, Valencia Hui
|b 54
700 1 _ |a Hutri-Kähönen, Nina
|b 55
700 1 _ |a Hwang, Shih-Jen
|b 56
700 1 _ |a Ikram, M Arfan
|b 57
700 1 _ |a Josyula, Navya Shilpa
|b 58
700 1 _ |a Kähönen, Mika
|b 59
700 1 _ |a Khor, Chiea-Chuen
|b 60
700 1 _ |a Koenig, Wolfgang
|b 61
700 1 _ |a Kramer, Holly
|b 62
700 1 _ |a Krämer, Bernhard K
|b 63
700 1 _ |a Kühnel, Brigitte
|b 64
700 1 _ |a Lange, Leslie A
|b 65
700 1 _ |a Lehtimäki, Terho
|b 66
700 1 _ |a Lieb, Wolfgang
|b 67
700 1 _ |a study, Lifelines cohort
|b 68
|e Collaboration Author
700 1 _ |a Center, Regeneron Genetics
|b 69
|e Collaboration Author
700 1 _ |a Loos, Ruth J F
|b 70
700 1 _ |a Lukas, Mary Ann
|b 71
700 1 _ |a Lyytikäinen, Leo-Pekka
|b 72
700 1 _ |a Meisinger, Christa
|b 73
700 1 _ |a Meitinger, Thomas
|b 74
700 1 _ |a Melander, Olle
|b 75
700 1 _ |a Milaneschi, Yuri
|b 76
700 1 _ |a Mishra, Pashupati P
|b 77
700 1 _ |a Mononen, Nina
|b 78
700 1 _ |a Mychaleckyj, Josyf C
|b 79
700 1 _ |a Nadkarni, Girish N
|b 80
700 1 _ |a Nauck, Matthias
|b 81
700 1 _ |a Nikus, Kjell
|b 82
700 1 _ |a Ning, Boting
|b 83
700 1 _ |a Nolte, Ilja M
|b 84
700 1 _ |a O'Donoghue, Michelle L
|b 85
700 1 _ |a Orho-Melander, Marju
|b 86
700 1 _ |a Pendergrass, Sarah A
|b 87
700 1 _ |a Penninx, Brenda W J H
|b 88
700 1 _ |a Preuss, Michael H
|b 89
700 1 _ |a Psaty, Bruce M
|b 90
700 1 _ |a Raffield, Laura M
|b 91
700 1 _ |a Raitakari, Olli T
|b 92
700 1 _ |a Rettig, Rainer
|b 93
700 1 _ |a Rheinberger, Myriam
|b 94
700 1 _ |a Rice, Kenneth M
|b 95
700 1 _ |a Rosenkranz, Alexander R
|b 96
700 1 _ |a Rossing, Peter
|b 97
700 1 _ |a Rotter, Jerome I
|b 98
700 1 _ |a Sabanayagam, Charumathi
|b 99
700 1 _ |a Schmidt, Helena
|b 100
700 1 _ |a Schmidt, Reinhold
|b 101
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 102
|u dkfz
700 1 _ |a Schulz, Christina-Alexandra
|b 103
700 1 _ |a Sedaghat, Sanaz
|b 104
700 1 _ |a Shaffer, Christian M
|b 105
700 1 _ |a Strauch, Konstantin
|b 106
700 1 _ |a Szymczak, Silke
|b 107
700 1 _ |a Taylor, Kent D
|b 108
700 1 _ |a Tremblay, Johanne
|b 109
700 1 _ |a Chaker, Layal
|b 110
700 1 _ |a van der Harst, Pim
|b 111
700 1 _ |a van der Most, Peter J
|b 112
700 1 _ |a Verweij, Niek
|b 113
700 1 _ |a Völker, Uwe
|b 114
700 1 _ |a Waldenberger, Melanie
|b 115
700 1 _ |a Wallentin, Lars
|b 116
700 1 _ |a Waterworth, Dawn M
|b 117
700 1 _ |a White, Harvey D
|b 118
700 1 _ |a Wilson, James G
|b 119
700 1 _ |a Wong, Tien-Yin
|b 120
700 1 _ |a Woodward, Mark
|b 121
700 1 _ |a Yang, Qiong
|b 122
700 1 _ |a Yasuda, Masayuki
|b 123
700 1 _ |a Yerges-Armstrong, Laura M
|b 124
700 1 _ |a Zhang, Yan
|b 125
700 1 _ |a Snieder, Harold
|b 126
700 1 _ |a Wanner, Christoph
|b 127
700 1 _ |a Böger, Carsten A
|b 128
700 1 _ |a Köttgen, Anna
|b 129
700 1 _ |a Kronenberg, Florian
|b 130
700 1 _ |a Pattaro, Cristian
|b 131
700 1 _ |a Heid, Iris M
|b 132
773 _ _ |a 10.1016/j.kint.2020.09.030
|g p. S0085253820312394
|0 PERI:(DE-600)2007940-0
|n 4
|p 926-939
|t Kidney international
|v 99
|y 2021
|x 0085-2538
909 C O |o oai:inrepo02.dkfz.de:164261
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 33
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 53
|6 P:(DE-He78)53e1a2846c69064e27790dbf349ccaec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 102
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-06
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21