000165842 001__ 165842 000165842 005__ 20240229133514.0 000165842 0247_ $$2doi$$a10.1002/mrm.28576 000165842 0247_ $$2pmid$$apmid:33166096 000165842 0247_ $$2ISSN$$a0740-3194 000165842 0247_ $$2ISSN$$a1522-2594 000165842 0247_ $$2altmetric$$aaltmetric:93972589 000165842 037__ $$aDKFZ-2020-02418 000165842 041__ $$aeng 000165842 082__ $$a610 000165842 1001_ $$00000-0002-6393-5415$$aAlhulail, Ahmad A$$b0 000165842 245__ $$aFast in vivo 23 Na imaging and T 2 ∗ mapping using accelerated 2D-FID UTE magnetic resonance spectroscopic imaging at 3 T: Proof of concept and reliability study. 000165842 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2021 000165842 3367_ $$2DRIVER$$aarticle 000165842 3367_ $$2DataCite$$aOutput Types/Journal article 000165842 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617964158_3293 000165842 3367_ $$2BibTeX$$aARTICLE 000165842 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000165842 3367_ $$00$$2EndNote$$aJournal Article 000165842 500__ $$a2021 Apr;85(4):1783-1794 000165842 520__ $$aTo implement an accelerated MR-acquisition method allowing to map T 2 ∗ relaxation and absolute concentration of sodium within skeletal muscles at 3T.A fast-UTE-2D density-weighted concentric-ring-trajectory 23 Na-MRSI technique was used to acquire 64 time points of FID with a spectral bandwidth of 312.5 Hz with an in-plane resolution of 2.5 × 2.5 mm2 in ~15 min. The fast-relaxing 23 Na signal was localized with a single-shot, inversion-recovery-based, non-echo (SIRENE) outer volume suppression (OVS) method. The sequence was verified using simulation and phantom studies before implementing it in human calf muscles. To evaluate the 2D-SIRENE-MRSI (UTE = 0.55 ms) imaging performance, it was compared to a 3D-MRI (UTE = 0.3 ms) sequence. Both data sets were acquired within 2 same-day sessions to assess repeatability. The T 2 ∗ values were fitted voxel-by-voxel using a biexponential model for the 2D-MRSI data. Finally, intra-subject coefficients of variation (CV) were estimated.The MRSI-FID data allowed us to map the fast and slow components of T 2 ∗ in the calf muscles. The spatial distributions of 23 Na concentration for both MRSI and 3D-MRI acquisitions were significantly correlated (P < .001). The test-retest analysis rendered high repeatability for MRSI with a CV of 5%. The mean T 2 Fast ∗ in muscles was 0.7 ± 0.1 ms (contribution fraction = 37%), whereas T 2 Slow ∗ was 13.2 ± 0.2 ms (63%). The mean absolute muscle 23 Na concentration calculated from the T 2 ∗ -corrected data was 28.6 ± 3.3 mM.The proposed MRSI technique is a reliable technique to map sodium's absolute concentration and T 2 ∗ within a clinically acceptable scan time at 3T. 000165842 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000165842 588__ $$aDataset connected to CrossRef, PubMed, 000165842 7001_ $$aXia, Pingyu$$b1 000165842 7001_ $$aShen, Xin$$b2 000165842 7001_ $$aNichols, Miranda$$b3 000165842 7001_ $$aVolety, Srijyotsna$$b4 000165842 7001_ $$aFarley, Nicholas$$b5 000165842 7001_ $$00000-0001-9037-2585$$aThomas, Micheal Albert$$b6 000165842 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin M$$b7$$udkfz 000165842 7001_ $$aDydak, Ulrike$$b8 000165842 7001_ $$00000-0001-5376-0431$$aEmir, Uzay E$$b9 000165842 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28576$$gp. mrm.28576$$n4$$p1783-1794$$tMagnetic resonance in medicine$$v85$$x1522-2594$$y2021 000165842 909CO $$ooai:inrepo02.dkfz.de:165842$$pVDB 000165842 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ 000165842 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0 000165842 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000165842 9141_ $$y2021 000165842 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger 000165842 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-05$$wger 000165842 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2018$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05 000165842 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05 000165842 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0 000165842 980__ $$ajournal 000165842 980__ $$aVDB 000165842 980__ $$aI:(DE-He78)E020-20160331 000165842 980__ $$aUNRESTRICTED