000165857 001__ 165857
000165857 005__ 20240229123214.0
000165857 0247_ $$2doi$$a10.1186/s40478-020-01058-6
000165857 0247_ $$2pmid$$apmid:33168106
000165857 0247_ $$2altmetric$$aaltmetric:93990815
000165857 037__ $$aDKFZ-2020-02433
000165857 041__ $$aeng
000165857 082__ $$a610
000165857 1001_ $$00000-0002-8059-8668$$aMata, Douglas A$$b0
000165857 245__ $$aGenetic and epigenetic landscape of IDH-wildtype glioblastomas with FGFR3-TACC3 fusions.
000165857 260__ $$aLondon$$bBiomed Central$$c2020
000165857 3367_ $$2DRIVER$$aarticle
000165857 3367_ $$2DataCite$$aOutput Types/Journal article
000165857 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605178011_3113
000165857 3367_ $$2BibTeX$$aARTICLE
000165857 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000165857 3367_ $$00$$2EndNote$$aJournal Article
000165857 520__ $$aA subset of glioblastomas (GBMs) harbors potentially druggable oncogenic FGFR3-TACC3 (F3T3) fusions. However, their associated molecular and clinical features are poorly understood. Here we analyze the frequency of F3T3-fusion positivity, its associated genetic and methylation profiles, and its impact on survival in 906 IDH-wildtype GBM patients. We establish an F3T3 prevalence of 4.1% and delineate its associations with cancer signaling pathway alterations. F3T3-positive GBMs had lower tumor mutational and copy-number alteration burdens than F3T3-wildtype GBMs. Although F3T3 fusions were predominantly mutually exclusive with other oncogenic RTK pathway alterations, they did rarely co-occur with EGFR amplification. They were less likely to harbor TP53 alterations. By methylation profiling, they were more likely to be assigned the mesenchymal or RTK II subclass. Despite being older at diagnosis and having similar frequencies of MGMT promoter hypermethylation, patients with F3T3-positive GBMs lived about 8 months longer than those with F3T3-wildtype tumors. While consistent with IDH-wildtype GBM, F3T3-positive GBMs exhibit distinct biological features, underscoring the importance of pursuing molecular studies prior to clinical trial enrollment and targeted treatment.
000165857 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000165857 588__ $$aDataset connected to CrossRef, PubMed,
000165857 7001_ $$00000-0001-5542-9857$$aBenhamida, Jamal K$$b1
000165857 7001_ $$aLin, Andrew L$$b2
000165857 7001_ $$aVanderbilt, Chad M$$b3
000165857 7001_ $$aYang, Soo-Ryum$$b4
000165857 7001_ $$aVillafania, Liliana B$$b5
000165857 7001_ $$aFerguson, Donna C$$b6
000165857 7001_ $$aJonsson, Philip$$b7
000165857 7001_ $$aMiller, Alexandra M$$b8
000165857 7001_ $$aTabar, Viviane$$b9
000165857 7001_ $$aBrennan, Cameron W$$b10
000165857 7001_ $$aMoss, Nelson S$$b11
000165857 7001_ $$0P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aSill, Martin$$b12$$udkfz
000165857 7001_ $$aBenayed, Ryma$$b13
000165857 7001_ $$aMellinghoff, Ingo K$$b14
000165857 7001_ $$aRosenblum, Marc K$$b15
000165857 7001_ $$aArcila, Maria E$$b16
000165857 7001_ $$aLadanyi, Marc$$b17
000165857 7001_ $$00000-0003-3641-9287$$aBale, Tejus A$$b18
000165857 773__ $$0PERI:(DE-600)2715589-4$$a10.1186/s40478-020-01058-6$$gVol. 8, no. 1, p. 186$$n1$$p186$$tActa Neuropathologica Communications$$v8$$x2051-5960$$y2020
000165857 909CO $$ooai:inrepo02.dkfz.de:165857$$pVDB
000165857 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000165857 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000165857 9141_ $$y2020
000165857 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA NEUROPATHOL COM : 2018$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-28
000165857 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA NEUROPATHOL COM : 2018$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-28
000165857 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-28
000165857 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000165857 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000165857 980__ $$ajournal
000165857 980__ $$aVDB
000165857 980__ $$aI:(DE-He78)B062-20160331
000165857 980__ $$aI:(DE-He78)HD01-20160331
000165857 980__ $$aUNRESTRICTED