000165890 001__ 165890
000165890 005__ 20240229123215.0
000165890 0247_ $$2doi$$a10.3389/fphy.2020.568243/full
000165890 037__ $$aDKFZ-2020-02459
000165890 082__ $$a530
000165890 1001_ $$aAlme, Johan$$b0
000165890 245__ $$aA High-Granularity Digital Tracking Calorimeter Optimized for Proton CT
000165890 260__ $$aLausanne$$bFrontiers Media$$c2020
000165890 3367_ $$2DRIVER$$aarticle
000165890 3367_ $$2DataCite$$aOutput Types/Journal article
000165890 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611663732_27926
000165890 3367_ $$2BibTeX$$aARTICLE
000165890 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000165890 3367_ $$00$$2EndNote$$aJournal Article
000165890 520__ $$aA typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4%. Thanks to its ability to detect different types of radiation and its specific design, the pCT scanner can be employed for additional online applications during the treatment, such as in-situ proton range verification.
000165890 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000165890 7001_ $$aBarnaföldi, Gergely Gábor$$b1
000165890 7001_ $$aBarthel, Rene$$b2
000165890 7001_ $$aBorshchov, Vyacheslav$$b3
000165890 7001_ $$aBodova, Tea$$b4
000165890 7001_ $$aBrink, Anthony van den$$b5
000165890 7001_ $$aBrons, Stephan$$b6
000165890 7001_ $$aChaar, Mamdouh$$b7
000165890 7001_ $$aEikeland, Viljar$$b8
000165890 7001_ $$aFeofilov, Grigory$$b9
000165890 7001_ $$aGenov, Georgi$$b10
000165890 7001_ $$aGrimstad, Silje$$b11
000165890 7001_ $$aGrøttvik, Ola$$b12
000165890 7001_ $$aHelstrup, Håvard$$b13
000165890 7001_ $$aHerland, Alf$$b14
000165890 7001_ $$aHilde, Annar Eivindplass$$b15
000165890 7001_ $$aIgolkin, Sergey$$b16
000165890 7001_ $$aKeidel, Ralf$$b17
000165890 7001_ $$aKobdaj, Chinorat$$b18
000165890 7001_ $$aKolk, Naomi van der$$b19
000165890 7001_ $$aListratenko, Oleksandr$$b20
000165890 7001_ $$aMalik, Qasim Waheed$$b21
000165890 7001_ $$aMehendale, Shruti$$b22
000165890 7001_ $$aMeric, Ilker$$b23
000165890 7001_ $$aNesbø, Simon Voigt$$b24
000165890 7001_ $$aOdland, Odd Harald$$b25
000165890 7001_ $$aPapp, Gábor$$b26
000165890 7001_ $$aPeitzmann, Thomas$$b27
000165890 7001_ $$aPettersen, Helge Egil Seime$$b28
000165890 7001_ $$0P:(DE-He78)575cf6451cbadd14564caf63e0062d8b$$aPiersimoni, Pierluigi$$b29
000165890 7001_ $$aProtsenko, Maksym$$b30
000165890 7001_ $$aRehman, Attiq Ur$$b31
000165890 7001_ $$aRichter, Matthias$$b32
000165890 7001_ $$aRöhrich, Dieter$$b33
000165890 7001_ $$aSamnøy, Andreas Tefre$$b34
000165890 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b35$$udkfz
000165890 7001_ $$aSetterdahl, Lena$$b36
000165890 7001_ $$aShafiee, Hesam$$b37
000165890 7001_ $$aSkjolddal, Øistein Jelmert$$b38
000165890 7001_ $$aSolheim, Emilie$$b39
000165890 7001_ $$aSongmoolnak, Arnon$$b40
000165890 7001_ $$aSudár, Ákos$$b41
000165890 7001_ $$aSølie, Jarle Rambo$$b42
000165890 7001_ $$aTambave, Ganesh$$b43
000165890 7001_ $$aTymchuk, Ihor$$b44
000165890 7001_ $$aUllaland, Kjetil$$b45
000165890 7001_ $$aUnderdal, Håkon Andreas$$b46
000165890 7001_ $$aVarga-Köfaragó, Monika$$b47
000165890 7001_ $$0P:(DE-He78)84cedecbe48f90adc2a1453780bdaf33$$aVolz, Lennart$$b48$$udkfz
000165890 7001_ $$aWagner, Boris$$b49
000165890 7001_ $$aWiderøe, Fredrik Mekki$$b50
000165890 7001_ $$aXiao, RenZheng$$b51
000165890 7001_ $$aYang, Shiming$$b52
000165890 7001_ $$aYokoyama, Hiroki$$b53
000165890 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2020.568243/full$$p568243$$tFrontiers in physics$$v8$$x2296-424X$$y2020
000165890 909CO $$ooai:inrepo02.dkfz.de:165890$$pVDB
000165890 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b35$$kDKFZ
000165890 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)84cedecbe48f90adc2a1453780bdaf33$$aDeutsches Krebsforschungszentrum$$b48$$kDKFZ
000165890 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000165890 9141_ $$y2020
000165890 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYS-LAUSANNE : 2018$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-06
000165890 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-06
000165890 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-06
000165890 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000165890 980__ $$ajournal
000165890 980__ $$aVDB
000165890 980__ $$aI:(DE-He78)E041-20160331
000165890 980__ $$aUNRESTRICTED