TY - JOUR
AU - Alme, Johan
AU - Barnaföldi, Gergely Gábor
AU - Barthel, Rene
AU - Borshchov, Vyacheslav
AU - Bodova, Tea
AU - Brink, Anthony van den
AU - Brons, Stephan
AU - Chaar, Mamdouh
AU - Eikeland, Viljar
AU - Feofilov, Grigory
AU - Genov, Georgi
AU - Grimstad, Silje
AU - Grøttvik, Ola
AU - Helstrup, Håvard
AU - Herland, Alf
AU - Hilde, Annar Eivindplass
AU - Igolkin, Sergey
AU - Keidel, Ralf
AU - Kobdaj, Chinorat
AU - Kolk, Naomi van der
AU - Listratenko, Oleksandr
AU - Malik, Qasim Waheed
AU - Mehendale, Shruti
AU - Meric, Ilker
AU - Nesbø, Simon Voigt
AU - Odland, Odd Harald
AU - Papp, Gábor
AU - Peitzmann, Thomas
AU - Pettersen, Helge Egil Seime
AU - Piersimoni, Pierluigi
AU - Protsenko, Maksym
AU - Rehman, Attiq Ur
AU - Richter, Matthias
AU - Röhrich, Dieter
AU - Samnøy, Andreas Tefre
AU - Seco, Joao
AU - Setterdahl, Lena
AU - Shafiee, Hesam
AU - Skjolddal, Øistein Jelmert
AU - Solheim, Emilie
AU - Songmoolnak, Arnon
AU - Sudár, Ákos
AU - Sølie, Jarle Rambo
AU - Tambave, Ganesh
AU - Tymchuk, Ihor
AU - Ullaland, Kjetil
AU - Underdal, Håkon Andreas
AU - Varga-Köfaragó, Monika
AU - Volz, Lennart
AU - Wagner, Boris
AU - Widerøe, Fredrik Mekki
AU - Xiao, RenZheng
AU - Yang, Shiming
AU - Yokoyama, Hiroki
TI - A High-Granularity Digital Tracking Calorimeter Optimized for Proton CT
JO - Frontiers in physics
VL - 8
SN - 2296-424X
CY - Lausanne
PB - Frontiers Media
M1 - DKFZ-2020-02459
SP - 568243
PY - 2020
AB - A typical proton CT (pCT) detector comprises a tracking system, used to measure the proton position before and after the imaged object, and an energy/range detector to measure the residual proton range after crossing the object. The Bergen pCT collaboration was established to design and build a prototype pCT scanner with a high granularity digital tracking calorimeter used as both tracking and energy/range detector. In this work the conceptual design and the layout of the mechanical and electronics implementation, along with Monte Carlo simulations of the new pCT system are reported. The digital tracking calorimeter is a multilayer structure with a lateral aperture of 27 cm × 16.6 cm, made of 41 detector/absorber sandwich layers (calorimeter), with aluminum (3.5 mm) used both as absorber and carrier, and two additional layers used as tracking system (rear trackers) positioned downstream of the imaged object; no tracking upstream the object is included. The rear tracker’s structure only differs from the calorimeter layers for the carrier made of ∼200 μm carbon fleece and carbon paper (carbon-epoxy sandwich), to minimize scattering. Each sensitive layer consists of 108 ALICE pixel detector (ALPIDE) chip sensors (developed for ALICE, CERN) bonded on a polyimide flex and subsequently bonded to a larger flexible printed circuit board. Beam tests tailored to the pCT operation have been performed using high-energetic (50–220 MeV/u) proton and ion beams at the Heidelberg Ion-Beam Therapy Center (HIT) in Germany. These tests proved the ALPIDE response independent of occupancy and proportional to the particle energy deposition, making the distinction of different ion tracks possible. The read-out electronics is able to handle enough data to acquire a single 2D image in few seconds making the system fast enough to be used in a clinical environment. For the reconstructed images in the modeled Monte Carlo simulation, the water equivalent path length error is lower than 2 mm, and the relative stopping power accuracy is better than 0.4
LB - PUB:(DE-HGF)16
DO - DOI:10.3389/fphy.2020.568243/full
UR - https://inrepo02.dkfz.de/record/165890
ER -