000165909 001__ 165909
000165909 005__ 20240229133515.0
000165909 0247_ $$2doi$$a10.1088/1361-6560/abca03
000165909 0247_ $$2pmid$$apmid:33181502
000165909 0247_ $$2ISSN$$a0031-9155
000165909 0247_ $$2ISSN$$a1361-6560
000165909 0247_ $$2altmetric$$aaltmetric:98856243
000165909 037__ $$aDKFZ-2020-02466
000165909 041__ $$aeng
000165909 082__ $$a530
000165909 1001_ $$00000-0003-4879-771X$$aPettersen, Helge Egil Seime$$b0
000165909 245__ $$aHelium radiography with a digital tracking calorimeter-a Monte Carlo study for secondary track rejection.
000165909 260__ $$aBristol$$bIOP Publ.$$c2021
000165909 3367_ $$2DRIVER$$aarticle
000165909 3367_ $$2DataCite$$aOutput Types/Journal article
000165909 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614874533_29952
000165909 3367_ $$2BibTeX$$aARTICLE
000165909 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000165909 3367_ $$00$$2EndNote$$aJournal Article
000165909 500__ $$a2021 Jan 26;66(3):035004
000165909 520__ $$aRadiation therapy using protons and heavier ions is a fast-growing therapeutic option for cancer patients. A clinical system for particle imaging in particle therapy would enable online patient position verification, estimation of the dose deposition through range monitoring and a reduction of uncertainties in the calculation of the relative stopping power of the patient. Several prototype imaging modalities offer radiography and computed tomography using protons and heavy ions. A Digital Tracking Calorimeter (DTC), currently under development, has been proposed as one such detector. In the DTC 43 longitudinal layers of laterally stacked ALPIDE CMOS monolithic active pixel sensor chips are able to reconstruct a large number of simultaneously recorded proton tracks. In this study, we explored the capability of the DTC for helium imaging which offers favorable spatial resolution over proton imaging. Helium ions exhibit a larger cross section for inelastic nuclear interactions, increasing the number of produced secondaries in the imaged object and in the detector itself. To that end, a filtering process able to remove a large fraction of the secondaries was identified, and the track reconstruction process was adapted for helium ions. By filtering on the energy loss along the tracks, on the incoming angle and on the particle ranges, 97.5% of the secondaries were removed. After passing through 16 cm water, 50.0% of the primary helium ions survived; after the proposed filtering 42.4% of the primaries remained; finally after subsequent image reconstruction 31% of the primaries remained. Helium track reconstruction leads to more track matching errors compared to protons, due to the increased available focus strength of the helium beam. In a head phantom radiograph, the Water Equivalent Path Length error envelope was 1.0 mm for helium and 1.1 mm for protons. This accuracy is expected to be sufficient for helium imaging for pre-treatment verification purposes.
000165909 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000165909 588__ $$aDataset connected to CrossRef, PubMed,
000165909 7001_ $$00000-0003-0441-4350$$aVolz, Lennart$$b1
000165909 7001_ $$00000-0002-8327-8248$$aSølie, Jarle Rambo$$b2
000165909 7001_ $$aAlme, Johan$$b3
000165909 7001_ $$aBarnaföldi, Gergely Gábor$$b4
000165909 7001_ $$aBarthel, Rene$$b5
000165909 7001_ $$avan den Brink, A.$$b6
000165909 7001_ $$aBorshchov, Viatcheslav$$b7
000165909 7001_ $$aChaar, Mamdouh$$b8
000165909 7001_ $$aEikeland, Viljar Nilsen$$b9
000165909 7001_ $$aGenov, Georgi$$b10
000165909 7001_ $$aGrøttvik, Ola Slettevoll$$b11
000165909 7001_ $$00000-0002-9335-9076$$aHelstrup, Håvard$$b12
000165909 7001_ $$aKeidel, Ralf$$b13
000165909 7001_ $$00000-0001-7296-5248$$aKobdaj, Chinorat$$b14
000165909 7001_ $$avan der Kolk, Naomi$$b15
000165909 7001_ $$aMehendale, Shruti$$b16
000165909 7001_ $$aMeric, Ilker$$b17
000165909 7001_ $$aOdland, Odd Harald$$b18
000165909 7001_ $$aPapp, G.$$b19
000165909 7001_ $$aPeitzmann, Thomas$$b20
000165909 7001_ $$00000-0002-8958-2179$$aPiersimoni, Pierluigi$$b21
000165909 7001_ $$aProtsenko, Maksym$$b22
000165909 7001_ $$aRehman, Attiq Ur$$b23
000165909 7001_ $$aRichter, Matthias$$b24
000165909 7001_ $$aSamnøy, Andreas Tefre$$b25
000165909 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b26$$udkfz
000165909 7001_ $$aShafiee, Hesam$$b27
000165909 7001_ $$aSongmoolnak, Arnon$$b28
000165909 7001_ $$aTambave, Ganesh$$b29
000165909 7001_ $$aTymchuk, Ihor$$b30
000165909 7001_ $$aUllaland, Kjetil$$b31
000165909 7001_ $$aVarga-Kofarago, Monika$$b32
000165909 7001_ $$aWagner, Boris$$b33
000165909 7001_ $$aXiao, RenZheng$$b34
000165909 7001_ $$aYang, Shiming$$b35
000165909 7001_ $$aYokoyama, Hiroki$$b36
000165909 7001_ $$aRoehrich, Dieter$$b37
000165909 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/abca03$$n3$$p035004$$tPhysics in medicine and biology$$v66$$x1361-6560$$y2021
000165909 909CO $$ooai:inrepo02.dkfz.de:165909$$pVDB
000165909 9101_ $$0I:(DE-588b)2036810-0$$60000-0003-0441-4350$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000165909 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b26$$kDKFZ
000165909 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000165909 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000165909 9141_ $$y2021
000165909 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-09$$wger
000165909 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-09$$wger
000165909 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2018$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000165909 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-09
000165909 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000165909 980__ $$ajournal
000165909 980__ $$aVDB
000165909 980__ $$aI:(DE-He78)E041-20160331
000165909 980__ $$aUNRESTRICTED