001     165909
005     20240229133515.0
024 7 _ |a 10.1088/1361-6560/abca03
|2 doi
024 7 _ |a pmid:33181502
|2 pmid
024 7 _ |a 0031-9155
|2 ISSN
024 7 _ |a 1361-6560
|2 ISSN
024 7 _ |a altmetric:98856243
|2 altmetric
037 _ _ |a DKFZ-2020-02466
041 _ _ |a eng
082 _ _ |a 530
100 1 _ |a Pettersen, Helge Egil Seime
|0 0000-0003-4879-771X
|b 0
245 _ _ |a Helium radiography with a digital tracking calorimeter-a Monte Carlo study for secondary track rejection.
260 _ _ |a Bristol
|c 2021
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1614874533_29952
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Jan 26;66(3):035004
520 _ _ |a Radiation therapy using protons and heavier ions is a fast-growing therapeutic option for cancer patients. A clinical system for particle imaging in particle therapy would enable online patient position verification, estimation of the dose deposition through range monitoring and a reduction of uncertainties in the calculation of the relative stopping power of the patient. Several prototype imaging modalities offer radiography and computed tomography using protons and heavy ions. A Digital Tracking Calorimeter (DTC), currently under development, has been proposed as one such detector. In the DTC 43 longitudinal layers of laterally stacked ALPIDE CMOS monolithic active pixel sensor chips are able to reconstruct a large number of simultaneously recorded proton tracks. In this study, we explored the capability of the DTC for helium imaging which offers favorable spatial resolution over proton imaging. Helium ions exhibit a larger cross section for inelastic nuclear interactions, increasing the number of produced secondaries in the imaged object and in the detector itself. To that end, a filtering process able to remove a large fraction of the secondaries was identified, and the track reconstruction process was adapted for helium ions. By filtering on the energy loss along the tracks, on the incoming angle and on the particle ranges, 97.5% of the secondaries were removed. After passing through 16 cm water, 50.0% of the primary helium ions survived; after the proposed filtering 42.4% of the primaries remained; finally after subsequent image reconstruction 31% of the primaries remained. Helium track reconstruction leads to more track matching errors compared to protons, due to the increased available focus strength of the helium beam. In a head phantom radiograph, the Water Equivalent Path Length error envelope was 1.0 mm for helium and 1.1 mm for protons. This accuracy is expected to be sufficient for helium imaging for pre-treatment verification purposes.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Volz, Lennart
|0 0000-0003-0441-4350
|b 1
700 1 _ |a Sølie, Jarle Rambo
|0 0000-0002-8327-8248
|b 2
700 1 _ |a Alme, Johan
|b 3
700 1 _ |a Barnaföldi, Gergely Gábor
|b 4
700 1 _ |a Barthel, Rene
|b 5
700 1 _ |a van den Brink, A.
|b 6
700 1 _ |a Borshchov, Viatcheslav
|b 7
700 1 _ |a Chaar, Mamdouh
|b 8
700 1 _ |a Eikeland, Viljar Nilsen
|b 9
700 1 _ |a Genov, Georgi
|b 10
700 1 _ |a Grøttvik, Ola Slettevoll
|b 11
700 1 _ |a Helstrup, Håvard
|0 0000-0002-9335-9076
|b 12
700 1 _ |a Keidel, Ralf
|b 13
700 1 _ |a Kobdaj, Chinorat
|0 0000-0001-7296-5248
|b 14
700 1 _ |a van der Kolk, Naomi
|b 15
700 1 _ |a Mehendale, Shruti
|b 16
700 1 _ |a Meric, Ilker
|b 17
700 1 _ |a Odland, Odd Harald
|b 18
700 1 _ |a Papp, G.
|b 19
700 1 _ |a Peitzmann, Thomas
|b 20
700 1 _ |a Piersimoni, Pierluigi
|0 0000-0002-8958-2179
|b 21
700 1 _ |a Protsenko, Maksym
|b 22
700 1 _ |a Rehman, Attiq Ur
|b 23
700 1 _ |a Richter, Matthias
|b 24
700 1 _ |a Samnøy, Andreas Tefre
|b 25
700 1 _ |a Seco, Joao
|0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
|b 26
|u dkfz
700 1 _ |a Shafiee, Hesam
|b 27
700 1 _ |a Songmoolnak, Arnon
|b 28
700 1 _ |a Tambave, Ganesh
|b 29
700 1 _ |a Tymchuk, Ihor
|b 30
700 1 _ |a Ullaland, Kjetil
|b 31
700 1 _ |a Varga-Kofarago, Monika
|b 32
700 1 _ |a Wagner, Boris
|b 33
700 1 _ |a Xiao, RenZheng
|b 34
700 1 _ |a Yang, Shiming
|b 35
700 1 _ |a Yokoyama, Hiroki
|b 36
700 1 _ |a Roehrich, Dieter
|b 37
773 _ _ |a 10.1088/1361-6560/abca03
|0 PERI:(DE-600)1473501-5
|n 3
|p 035004
|t Physics in medicine and biology
|v 66
|y 2021
|x 1361-6560
909 C O |o oai:inrepo02.dkfz.de:165909
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 0000-0003-0441-4350
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-09
|w ger
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MED BIOL : 2018
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-09
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l E041 Medizinische Physik in der Radioonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21