000165913 001__ 165913
000165913 005__ 20240229123216.0
000165913 0247_ $$2doi$$a10.1088/1361-6560/abb1d6
000165913 0247_ $$2pmid$$apmid:33179874
000165913 0247_ $$2ISSN$$a0031-9155
000165913 0247_ $$2ISSN$$a1361-6560
000165913 037__ $$aDKFZ-2020-02470
000165913 041__ $$aeng
000165913 082__ $$a530
000165913 1001_ $$00000-0002-1874-5030$$aThummerer, Adrian$$b0
000165913 245__ $$aComparison of the suitability of CBCT- and MR-based synthetic CTs for daily adaptive proton therapy in head and neck patients.
000165913 260__ $$aBristol$$bIOP Publ.$$c2020
000165913 3367_ $$2DRIVER$$aarticle
000165913 3367_ $$2DataCite$$aOutput Types/Journal article
000165913 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607426240_22068
000165913 3367_ $$2BibTeX$$aARTICLE
000165913 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000165913 3367_ $$00$$2EndNote$$aJournal Article
000165913 520__ $$aCBCT- and MR-images allow a daily observation of patient anatomy but are not directly suited for accurate proton dose calculations. This can be overcome by creating synthetic CTs (sCT) using deep convolutional neural networks (DCNN). In this study, we compared sCTs based on CBCTs and MRs for head and neck cancer patients in terms of image quality and proton dose calculation accuracy. A dataset of 27 H&N-patients, treated with proton therapy, containing planning CTs, repeat CTs, CBCTs and MRs were used to train two neural networks to convert either CBCTs or MRs into synthetic CTs. Image quality was quantified by calculating mean absolute error (MAE), mean error (ME) and dice similarity coefficient (DSC) for bones. The dose evaluation consisted of a systematic non-clinical analysis and a clinical recalculation of actually used proton treatment plans. Gamma analysis was performed for non-clinical and clinical treatment plans. For clinical treatment plans also dose to targets and organs at risk (OARs) and normal tissue complication probabilities (NTCP) were compared. CBCT-based sCTs resulted in higher image quality with an average MAE of 40±4 HU and a DSC of 0.95, while for MR-based sCTs a MAE of 65±4 HU and a DSC of 0.89 was observed. Also in clinical proton dose calculations, sCTCBCT achieved higher average gamma pass ratios (2%/2mm criterion) than sCTMR (96.1% vs. 93.3%). Dose-volume histograms for selected OARs and NTCP-values showed a very small difference between sCTCBCT and sCTMR and a high agreement with the reference planning-CT. CBCT- and MR-based sCTs have the potential to enable accurate proton dose calculations valuable for daily adaptive proton therapy. Significant image quality differences were observed but did not affect proton dose calculation accuracy in a similar manner. Especially the recalculation of clinical treatment plans showed high agreement with the planning CT for both sCTCBCT and sCTMR.
000165913 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000165913 588__ $$aDataset connected to CrossRef, PubMed,
000165913 7001_ $$ade Jong, Bas A$$b1
000165913 7001_ $$aZaffino, Paolo$$b2
000165913 7001_ $$aMeijers, Arturs$$b3
000165913 7001_ $$00000-0002-8486-7001$$aMarmitt, Gabriel G$$b4
000165913 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b5$$udkfz
000165913 7001_ $$aSteenbakkers, Roel J H M$$b6
000165913 7001_ $$aLangendijk, Johannes A$$b7
000165913 7001_ $$aBoth, Stefan$$b8
000165913 7001_ $$aSpadea, Maria Francesca$$b9
000165913 7001_ $$aKnopf, Antje-Christin$$b10
000165913 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/abb1d6$$n23$$p235036$$tPhysics in medicine and biology$$v65$$x1361-6560$$y2020
000165913 909CO $$ooai:inrepo02.dkfz.de:165913$$pVDB
000165913 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000165913 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000165913 9141_ $$y2020
000165913 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-09$$wger
000165913 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-09$$wger
000165913 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2018$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000165913 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-09
000165913 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000165913 980__ $$ajournal
000165913 980__ $$aVDB
000165913 980__ $$aI:(DE-He78)E041-20160331
000165913 980__ $$aUNRESTRICTED