000165948 001__ 165948
000165948 005__ 20240229133515.0
000165948 0247_ $$2doi$$a10.1002/mp.14597
000165948 0247_ $$2pmid$$apmid:33207020
000165948 0247_ $$2ISSN$$a0094-2405
000165948 0247_ $$2ISSN$$a1522-8541
000165948 0247_ $$2ISSN$$a2473-4209
000165948 0247_ $$2altmetric$$aaltmetric:94636125
000165948 037__ $$aDKFZ-2020-02497
000165948 041__ $$aeng
000165948 082__ $$a610
000165948 1001_ $$0P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad$$aGillmann, Clarissa$$b0$$udkfz
000165948 245__ $$aTechnical note: ADAM PETer - an anthropomorphic, deformable and multimodality pelvis phantom with position emission tomography extension for radiotherapy.
000165948 260__ $$aCollege Park, Md.$$bAAPM$$c2021
000165948 3367_ $$2DRIVER$$aarticle
000165948 3367_ $$2DataCite$$aOutput Types/Journal article
000165948 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619608422_10522
000165948 3367_ $$2BibTeX$$aARTICLE
000165948 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000165948 3367_ $$00$$2EndNote$$aJournal Article
000165948 500__ $$a2021 Apr;48(4):1624-1632#EA:E040#LA:E010#
000165948 520__ $$aTo develop an anthropomorphic, deformable and multimodal pelvis phantom with positron emission tomography extension for radiotherapy (ADAM PETer).The design of ADAM PETer was based on our previous pelvis phantom (ADAM) and extended for compatibility with PET and use in 3T magnetic resonance imaging (MRI). The formerly manually manufactured silicon organ surrogates were replaced by 3D printed organ shells. Two intraprostatic lesions, four iliac lymph node metastases and two pelvic bone metastases were added to simulate prostate cancer as multifocal and metastatic disease. Radiological properties (computed tomography (CT) and 3T MRI) of cortical bone, bone marrow and adipose tissue were simulated by heavy gypsum, a mixture of Vaseline and K2 HPO4 and peanut oil, respectively. For soft tissues, agarose gels with varying concentrations of agarose, gadolinium (Gd) and sodium fluoride (NaF) were developed. The agarose gels were doped with patient-specific activity concentrations of a Fluorine-18 labelled compound and then filled into the 3D printed organ shells of prostate lesions, lymph node and bone metastases. The phantom was imaged at a dual energy CT and a 3T PET/MRI scanner.The compositions of the soft tissue surrogates are the following (given as mass fractions of agarose[w%]/NaF[w%]/Gd[w%]): Muscle (4/1/0.027), prostate (1.35/4.2/0.011), prostate lesions (2.25/4.2/0.0085), lymph node and bone metastases (1.4/4.2/0.025). In all imaging modalities, the phantom simulates human contrast. Intraprostatic lesions appear hypointense as compared to the surrounding normal prostate tissue in T2-weighted MRI. The PET signal of all tumors can be localized as focal spots at their respective site. Activity concentrations of 12.0 kBq/mL (prostate lesion), 12.4 kBq/mL (lymph nodes) and 39.5 kBq/mL (bone metastases) were measured.The ADAM PETer pelvis phantom can be used as multimodal, anthropomorphic model for CT, 3T-MRI and PET measurements. It will be central to simulate and optimize the technical workflow for the integration of PET/MRI-based radiation treatment planning of prostate cancer patients.
000165948 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000165948 588__ $$aDataset connected to CrossRef, PubMed,
000165948 7001_ $$0P:(DE-He78)12d057e4e1db0b986464bb2af448eb26$$aHomolka, Noa$$b1$$udkfz
000165948 7001_ $$0P:(DE-He78)5c55eb63ee2ad2499f7dda0ed08c571b$$aJohnen, Wibke$$b2$$udkfz
000165948 7001_ $$0P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07$$aRunz, Armin$$b3$$udkfz
000165948 7001_ $$0P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aEchner, Gernot$$b4$$udkfz
000165948 7001_ $$0P:(DE-He78)435853c50cec6666e13c237685053577$$aPfaffenberger, Asja$$b5$$udkfz
000165948 7001_ $$0P:(DE-He78)d26409e0d07007daf771142a945102ef$$aMann, Philipp$$b6$$udkfz
000165948 7001_ $$0P:(DE-He78)61754f6770eeaf7135e4fa4e98bfdd94$$aSchneider, Verena$$b7$$udkfz
000165948 7001_ $$aHoffmann, Aswin L$$b8
000165948 7001_ $$0P:(DE-He78)91d4b4a1e36e2bec6c08ac43e6820834$$aTroost, Esther$$b9$$udkfz
000165948 7001_ $$aKoerber, Stefan A$$b10
000165948 7001_ $$aKotzerke, Jörg$$b11
000165948 7001_ $$0P:(DE-He78)c5312d96130619e491466891238cc117$$aBeuthien-Baumann, Bettina$$b12$$udkfz
000165948 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.14597$$gp. mp.14597$$n4$$p1624-1632$$tMedical physics$$v48$$x2473-4209$$y2021
000165948 909CO $$ooai:inrepo02.dkfz.de:165948$$pVDB
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)12d057e4e1db0b986464bb2af448eb26$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5c55eb63ee2ad2499f7dda0ed08c571b$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)435853c50cec6666e13c237685053577$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d26409e0d07007daf771142a945102ef$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)61754f6770eeaf7135e4fa4e98bfdd94$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)91d4b4a1e36e2bec6c08ac43e6820834$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000165948 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c5312d96130619e491466891238cc117$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000165948 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000165948 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000165948 9141_ $$y2021
000165948 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-29$$wger
000165948 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2018$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-29
000165948 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-29
000165948 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000165948 9201_ $$0I:(DE-He78)W060-20160331$$kW060$$lW060 Strahlenschutz und Dosimetrie$$x1
000165948 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x2
000165948 9201_ $$0I:(DE-He78)DD01-20160331$$kDD01$$lDKTK DD zentral$$x3
000165948 980__ $$ajournal
000165948 980__ $$aVDB
000165948 980__ $$aI:(DE-He78)E040-20160331
000165948 980__ $$aI:(DE-He78)W060-20160331
000165948 980__ $$aI:(DE-He78)E010-20160331
000165948 980__ $$aI:(DE-He78)DD01-20160331
000165948 980__ $$aUNRESTRICTED