001     165948
005     20240229133515.0
024 7 _ |a 10.1002/mp.14597
|2 doi
024 7 _ |a pmid:33207020
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
024 7 _ |a altmetric:94636125
|2 altmetric
037 _ _ |a DKFZ-2020-02497
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Gillmann, Clarissa
|0 P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad
|b 0
|u dkfz
245 _ _ |a Technical note: ADAM PETer - an anthropomorphic, deformable and multimodality pelvis phantom with position emission tomography extension for radiotherapy.
260 _ _ |a College Park, Md.
|c 2021
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1619608422_10522
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Apr;48(4):1624-1632#EA:E040#LA:E010#
520 _ _ |a To develop an anthropomorphic, deformable and multimodal pelvis phantom with positron emission tomography extension for radiotherapy (ADAM PETer).The design of ADAM PETer was based on our previous pelvis phantom (ADAM) and extended for compatibility with PET and use in 3T magnetic resonance imaging (MRI). The formerly manually manufactured silicon organ surrogates were replaced by 3D printed organ shells. Two intraprostatic lesions, four iliac lymph node metastases and two pelvic bone metastases were added to simulate prostate cancer as multifocal and metastatic disease. Radiological properties (computed tomography (CT) and 3T MRI) of cortical bone, bone marrow and adipose tissue were simulated by heavy gypsum, a mixture of Vaseline and K2 HPO4 and peanut oil, respectively. For soft tissues, agarose gels with varying concentrations of agarose, gadolinium (Gd) and sodium fluoride (NaF) were developed. The agarose gels were doped with patient-specific activity concentrations of a Fluorine-18 labelled compound and then filled into the 3D printed organ shells of prostate lesions, lymph node and bone metastases. The phantom was imaged at a dual energy CT and a 3T PET/MRI scanner.The compositions of the soft tissue surrogates are the following (given as mass fractions of agarose[w%]/NaF[w%]/Gd[w%]): Muscle (4/1/0.027), prostate (1.35/4.2/0.011), prostate lesions (2.25/4.2/0.0085), lymph node and bone metastases (1.4/4.2/0.025). In all imaging modalities, the phantom simulates human contrast. Intraprostatic lesions appear hypointense as compared to the surrounding normal prostate tissue in T2-weighted MRI. The PET signal of all tumors can be localized as focal spots at their respective site. Activity concentrations of 12.0 kBq/mL (prostate lesion), 12.4 kBq/mL (lymph nodes) and 39.5 kBq/mL (bone metastases) were measured.The ADAM PETer pelvis phantom can be used as multimodal, anthropomorphic model for CT, 3T-MRI and PET measurements. It will be central to simulate and optimize the technical workflow for the integration of PET/MRI-based radiation treatment planning of prostate cancer patients.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Homolka, Noa
|0 P:(DE-He78)12d057e4e1db0b986464bb2af448eb26
|b 1
|u dkfz
700 1 _ |a Johnen, Wibke
|0 P:(DE-He78)5c55eb63ee2ad2499f7dda0ed08c571b
|b 2
|u dkfz
700 1 _ |a Runz, Armin
|0 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
|b 3
|u dkfz
700 1 _ |a Echner, Gernot
|0 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
|b 4
|u dkfz
700 1 _ |a Pfaffenberger, Asja
|0 P:(DE-He78)435853c50cec6666e13c237685053577
|b 5
|u dkfz
700 1 _ |a Mann, Philipp
|0 P:(DE-He78)d26409e0d07007daf771142a945102ef
|b 6
|u dkfz
700 1 _ |a Schneider, Verena
|0 P:(DE-He78)61754f6770eeaf7135e4fa4e98bfdd94
|b 7
|u dkfz
700 1 _ |a Hoffmann, Aswin L
|b 8
700 1 _ |a Troost, Esther
|0 P:(DE-He78)91d4b4a1e36e2bec6c08ac43e6820834
|b 9
|u dkfz
700 1 _ |a Koerber, Stefan A
|b 10
700 1 _ |a Kotzerke, Jörg
|b 11
700 1 _ |a Beuthien-Baumann, Bettina
|0 P:(DE-He78)c5312d96130619e491466891238cc117
|b 12
|u dkfz
773 _ _ |a 10.1002/mp.14597
|g p. mp.14597
|0 PERI:(DE-600)1466421-5
|n 4
|p 1624-1632
|t Medical physics
|v 48
|y 2021
|x 2473-4209
909 C O |o oai:inrepo02.dkfz.de:165948
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a7fec7d808abe2d2579a48df08c0f0ad
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)12d057e4e1db0b986464bb2af448eb26
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)5c55eb63ee2ad2499f7dda0ed08c571b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)435853c50cec6666e13c237685053577
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)d26409e0d07007daf771142a945102ef
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)61754f6770eeaf7135e4fa4e98bfdd94
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)91d4b4a1e36e2bec6c08ac43e6820834
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)c5312d96130619e491466891238cc117
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-29
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2018
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-09-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-29
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)W060-20160331
|k W060
|l W060 Strahlenschutz und Dosimetrie
|x 1
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 2
920 1 _ |0 I:(DE-He78)DD01-20160331
|k DD01
|l DKTK DD zentral
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)W060-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)DD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21