001     165992
005     20240229123218.0
024 7 _ |a 10.1016/j.ejmp.2020.10.021
|2 doi
024 7 _ |a pmid:33220650
|2 pmid
024 7 _ |a 1120-1797
|2 ISSN
024 7 _ |a 1724-191X
|2 ISSN
024 7 _ |a altmetric:96072604
|2 altmetric
037 _ _ |a DKFZ-2020-02531
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Shukla, Bhargesh
|0 P:(DE-He78)1ec648ec69513521dc03d0a568f01392
|b 0
|e First author
245 _ _ |a Dosimetry in magnetic fields with dedicated MR-compatible ionization chambers.
260 _ _ |a Amsterdam
|c 2020
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1607690661_7518
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040#
520 _ _ |a MR-integrated radiotherapy requires suitable dosimetry detectors to be used in magnetic fields. This study investigates the feasibility of using dedicated MR-compatible ionization chambers at MR-integrated radiotherapy devices. MR-compatible ionization chambers (Exradin A19MR, A1SLMR, A26MR, A28MR) were precisely modeled and their relative response in a 6MV treatment beam in the presence of a magnetic field was simulated using EGSnrc. Monte Carlo simulations were carried out with the magnetic field in three orientations: the magnetic field aligned perpendicular to the chamber and beam axis (transverse orientation), the magnetic field parallel to the chamber as well as parallel to the beam axis. Monte Carlo simulation results were validated with measurements using an electromagnet with magnetic field strength upto 1.1 T with the chambers in transverse orientation. The measurements and simulation results were in good agreement, except for the A26MR ionization chamber in transverse orientation. The maximum increase in response of the ionization chambers observed was 8.6% for the transverse orientation. No appreciable change in chamber response due to the magnetic field was observed for the magnetic field parallel to the ionization chamber and parallel to the photon beam. Polarity and recombination correction factor were experimentally investigated in the transverse orientation. The polarity effect and recombination effect were not altered by a magnetic field. This study further investigates the response of the ionization chambers as a function of the chambers' rotation around their longitudinal axis. A variation in response was observed when the chamber was not rotationally symmetric, which was independent of the magnetic field.
536 _ _ |a 315 - Imaging and radiooncology (POF3-315)
|0 G:(DE-HGF)POF3-315
|c POF3-315
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Spindeldreier, Claudia Katharina
|0 P:(DE-He78)68622f6bdd6a5e6841631a06e4a67f7e
|b 1
700 1 _ |a Schrenk, Oliver
|0 P:(DE-He78)b377d8c2c6e92884ed0e0e297ab4b3da
|b 2
700 1 _ |a Bakenecker, Anna C
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Klüter, Sebastian
|b 4
700 1 _ |a Kawrakow, Iwan
|b 5
700 1 _ |a Runz, Armin
|0 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
|b 6
|u dkfz
700 1 _ |a Burigo, Lucas
|0 P:(DE-He78)914adea2baeb4f2c6a29637da6500048
|b 7
|u dkfz
700 1 _ |a Karger, Christian P
|0 P:(DE-He78)b43076fb0a30230e4323887c0c980046
|b 8
|u dkfz
700 1 _ |a Greilich, Klaus-Steffen
|0 P:(DE-He78)bf44d68f90110cc79436dbb10f477518
|b 9
700 1 _ |a Pfaffenberger, Asja
|0 P:(DE-He78)435853c50cec6666e13c237685053577
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.ejmp.2020.10.021
|g Vol. 80, p. 259 - 266
|0 PERI:(DE-600)2110535-2
|p 259 - 266
|t Physica medica
|v 80
|y 2020
|x 1120-1797
909 C O |o oai:inrepo02.dkfz.de:165992
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)68622f6bdd6a5e6841631a06e4a67f7e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)b377d8c2c6e92884ed0e0e297ab4b3da
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)914adea2baeb4f2c6a29637da6500048
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)b43076fb0a30230e4323887c0c980046
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)bf44d68f90110cc79436dbb10f477518
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)435853c50cec6666e13c237685053577
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|2 G:(DE-HGF)POF3-300
|v Imaging and radiooncology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-05
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MEDICA : 2018
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-05
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21