000166043 001__ 166043
000166043 005__ 20240229123219.0
000166043 0247_ $$2doi$$a10.1186/s41181-020-00107-8
000166043 0247_ $$2pmid$$apmid:33242189
000166043 0247_ $$2altmetric$$aaltmetric:95013461
000166043 037__ $$aDKFZ-2020-02582
000166043 041__ $$aeng
000166043 082__ $$a610
000166043 1001_ $$aSinnes, Jean-Philippe$$b0
000166043 245__ $$a68Ga, 44Sc and 177Lu-labeled AAZTA5-PSMA-617: synthesis, radiolabeling, stability and cell binding compared to DOTA-PSMA-617 analogues.
000166043 260__ $$a[Heidelberg]$$bSpringerOpen$$c2020
000166043 3367_ $$2DRIVER$$aarticle
000166043 3367_ $$2DataCite$$aOutput Types/Journal article
000166043 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607690309_6659
000166043 3367_ $$2BibTeX$$aARTICLE
000166043 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166043 3367_ $$00$$2EndNote$$aJournal Article
000166043 520__ $$aThe AAZTA chelator and in particular its bifunctional derivative AAZTA5 was recently investigated to demonstrate unique capabilities to complex diagnostic and therapeutic trivalent radiometals under mild conditions. This study presents a comparison of 68Ga, 44Sc and 177Lu-labeled AAZTA5-PSMA-617 with DOTA-PSMA-617 analogues. We evaluated the radiolabeling characteristics, in vitro stability of the radiolabeled compounds and evaluated their binding affinity and internalization behavior on LNCaP tumor cells in direct comparison to the radiolabeled DOTA-conjugated PSMA-617 analogs.AAZTA5 was synthesized in a five-step synthesis and coupled to the PSMA-617 backbone on solid phase. Radiochemical evaluation of AAZTA5-PSMA-617 with 68Ga, 44Sc and 177Lu achieved quantitative radiolabeling of > 99% after less than 5 min at room temperature. Stabilities against human serum, PBS buffer and EDTA and DTPA solutions were analyzed. While there was a small degradation of the 68Ga complex over 2 h in human serum, PBS and EDTA/DTPA, the 44Sc and 177Lu complexes were stable at 2 h and remained stable over 8 h and 1 day. For all three compounds, i.e. [natGa]Ga-AAZTA5-PSMA-617, [natSc]Sc-AAZTA5-PSMA-617 and [natLu]Lu-AAZTA5-PSMA-617, in vitro studies on PSMA-positive LNCaP cells were performed in direct comparison to radiolabeled DOTA-PSMA-617 yielding the corresponding inhibition constants (Ki). Ki values were in the range of 8-31 nM values which correspond with those of [natGa]Ga-DOTA-PSMA-617, [natSc]Sc-DOTA-PSMA-617 and [natLu]Lu-DOTA-PSMA-617, i.e. 5-7 nM, respectively. Internalization studies demonstrated cellular membrane to internalization ratios for the radiolabeled 68Ga, 44Sc and 177Lu-AAZTA5-PSMA-617 tracers (13-20%IA/106 cells) in the same range as the ones of the three radiolabeled DOTA-PSMA-617 tracers (17-20%IA/106 cells) in the same assay.The AAZTA5-PSMA-617 structure proved fast and quantitative radiolabeling with all three radiometal complexes at room temperature, excellent stability with 44Sc, very high stability with 177Lu and medium stability with 68Ga in human serum, PBS and EDTA/DTPA solutions. All three AAZTA5-PSMA-617 tracers showed binding affinities and internalization ratios in LNCaP cells comparable with that of radiolabeled DOTA-PSMA-617 analogues. Therefore, the exchange of the chelator DOTA with AAZTA5 within the PSMA-617 binding motif has no negative influence on in vitro LNCaP cell binding characteristics. In combination with the faster and milder radiolabeling features, AAZTA5-PSMA-617 thus demonstrates promising potential for in vivo application for theranostics of prostate cancer.
000166043 536__ $$0G:(DE-HGF)POF3-315$$a315 - Imaging and radiooncology (POF3-315)$$cPOF3-315$$fPOF III$$x0
000166043 588__ $$aDataset connected to CrossRef, PubMed,
000166043 7001_ $$0P:(DE-He78)033d979f00729281e709b85fe6cae972$$aBauder-Wüst, Ulrike$$b1$$udkfz
000166043 7001_ $$0P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa$$aSchäfer, Martin$$b2$$udkfz
000166043 7001_ $$aMoon, Euy Sung$$b3
000166043 7001_ $$0P:(DE-He78)9793347ba83f527b81a22ab75af9378a$$aKopka, Klaus$$b4$$udkfz
000166043 7001_ $$00000-0001-7472-4050$$aRösch, Frank$$b5
000166043 773__ $$0PERI:(DE-600)2843088-8$$a10.1186/s41181-020-00107-8$$gVol. 5, no. 1, p. 28$$n1$$p28$$tEJNMMI radiopharmacy and chemistry$$v5$$x2365-421X$$y2020
000166043 909CO $$ooai:inrepo02.dkfz.de:166043$$pVDB
000166043 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)033d979f00729281e709b85fe6cae972$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000166043 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000166043 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9793347ba83f527b81a22ab75af9378a$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000166043 9131_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000166043 9141_ $$y2020
000166043 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-12
000166043 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-12
000166043 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-12
000166043 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-12
000166043 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-12
000166043 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-09-12
000166043 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-12
000166043 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-12
000166043 9201_ $$0I:(DE-He78)DD01-20160331$$kDD01$$lDKTK DD zentral$$x0
000166043 9201_ $$0I:(DE-He78)E030-20160331$$kE030$$lE030 Radiopharmazeutische Chemie$$x1
000166043 980__ $$ajournal
000166043 980__ $$aVDB
000166043 980__ $$aI:(DE-He78)DD01-20160331
000166043 980__ $$aI:(DE-He78)E030-20160331
000166043 980__ $$aUNRESTRICTED