000166141 001__ 166141
000166141 005__ 20240229123220.0
000166141 0247_ $$2doi$$a10.1186/s13148-020-00977-4
000166141 0247_ $$2pmid$$apmid:33256852
000166141 0247_ $$2ISSN$$a1868-7075
000166141 0247_ $$2ISSN$$a1868-7083
000166141 037__ $$aDKFZ-2020-02649
000166141 041__ $$aeng
000166141 082__ $$a610
000166141 1001_ $$0P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aGao, Xin$$b0$$eFirst author
000166141 245__ $$aWhole blood DNA methylation aging markers predict colorectal cancer survival: a prospective cohort study.
000166141 260__ $$a[S.l.]$$bBioMed Central$$c2020
000166141 3367_ $$2DRIVER$$aarticle
000166141 3367_ $$2DataCite$$aOutput Types/Journal article
000166141 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1607678249_7518
000166141 3367_ $$2BibTeX$$aARTICLE
000166141 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166141 3367_ $$00$$2EndNote$$aJournal Article
000166141 520__ $$aBlood DNA methylation-based aging algorithms predict mortality in the general population. We investigated the prognostic value of five established DNA methylation aging algorithms for patients with colorectal cancer (CRC).AgeAccelHorvath, AgeAccelHannum, DNAmMRscore, AgeAccelPheno and AgeAccelGrim were constructed using whole blood epi-genomic data from 2206 CRC patients. After a median follow-up of 6.2 years, 1079 deaths were documented, including 596 from CRC. Associations of the aging algorithms with survival outcomes were evaluated using the Cox regression and survival curves. Harrell's C-statistics were computed to investigate predictive performance.Adjusted hazard ratios (95% confidence intervals) of all-cause mortality for patients in the third compared to the first tertile were 1.66 (1.32, 2.09) for the DNAmMRscore, 1.35 (1.14, 1.59) for AgeAccelPheno and 1.65 (1.37, 2.00) for AgeAccelGrim, even after adjustment for age, sex and stage. AgeAccelHorvath and AgeAccelHannum were not associated with all-cause or CRC-specific mortality. In stage-specific analyses, associations were much stronger for patients with early or intermediate stage cancers (stages I, II and III) than for patients with metastatic (stage IV) cancers. Associations were weaker and less often statistically significant for CRC-specific mortality. Adding DNAmMRscore, AgeAccelPheno or AgeAccelGrim to models including age, sex and tumor stage improved predictive performance moderately.DNAmMRscore, AgeAccelPheno and AgeAccelGrim could serve as non-invasive CRC prognostic biomarkers independent of other commonly used markers. Further research should aim for tailoring and refining such algorithms for CRC patients and to explore their value for enhanced prediction of treatment success and treatment decisions.
000166141 536__ $$0G:(DE-HGF)POF3-313$$a313 - Cancer risk factors and prevention (POF3-313)$$cPOF3-313$$fPOF III$$x0
000166141 588__ $$aDataset connected to CrossRef, PubMed,
000166141 7001_ $$0P:(DE-He78)6a8f87626cb610618a60d742677284cd$$aZhang, Yan$$b1
000166141 7001_ $$0P:(DE-He78)657300dfd28903ec8149ca9bf5e7968d$$aBoakye, Daniel$$b2
000166141 7001_ $$0P:(DE-He78)70ce269695a19b94f3f8b0bca12ec49b$$aLi, Xiangwei$$b3
000166141 7001_ $$0P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aChang-Claude, Jenny$$b4
000166141 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b5
000166141 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b6$$eLast author
000166141 773__ $$0PERI:(DE-600)2553921-8$$a10.1186/s13148-020-00977-4$$gVol. 12, no. 1, p. 184$$n1$$p184$$tClinical epigenetics$$v12$$x1868-7083$$y2020
000166141 909CO $$ooai:inrepo02.dkfz.de:166141$$pVDB
000166141 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000166141 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6a8f87626cb610618a60d742677284cd$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000166141 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)657300dfd28903ec8149ca9bf5e7968d$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000166141 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)70ce269695a19b94f3f8b0bca12ec49b$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000166141 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000166141 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000166141 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000166141 9131_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000166141 9141_ $$y2020
000166141 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIN EPIGENETICS : 2018$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-23
000166141 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCLIN EPIGENETICS : 2018$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-23
000166141 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-23
000166141 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000166141 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000166141 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x2
000166141 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x3
000166141 980__ $$ajournal
000166141 980__ $$aVDB
000166141 980__ $$aI:(DE-He78)C070-20160331
000166141 980__ $$aI:(DE-He78)HD01-20160331
000166141 980__ $$aI:(DE-He78)C020-20160331
000166141 980__ $$aI:(DE-He78)C120-20160331
000166141 980__ $$aUNRESTRICTED