000166360 001__ 166360
000166360 005__ 20240229123228.0
000166360 0247_ $$2doi$$a10.1038/s41416-020-0751-8
000166360 0247_ $$2pmid$$apmid:32063604
000166360 0247_ $$2pmc$$apmc:PMC7109069
000166360 0247_ $$2ISSN$$a0007-0920
000166360 0247_ $$2ISSN$$a1532-1827
000166360 0247_ $$2altmetric$$aaltmetric:76244330
000166360 037__ $$aDKFZ-2020-02849
000166360 041__ $$aeng
000166360 082__ $$a610
000166360 1001_ $$0P:(DE-HGF)0$$aGranados, Karol$$b0$$eFirst author
000166360 245__ $$aT-type calcium channel inhibition restores sensitivity to MAPK inhibitors in de-differentiated and adaptive melanoma cells.
000166360 260__ $$aEdinburgh$$bNature Publ. Group$$c2020
000166360 3367_ $$2DRIVER$$aarticle
000166360 3367_ $$2DataCite$$aOutput Types/Journal article
000166360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609164026_25762
000166360 3367_ $$2BibTeX$$aARTICLE
000166360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166360 3367_ $$00$$2EndNote$$aJournal Article
000166360 500__ $$a#EA:A370#LA:A370#
000166360 520__ $$aDrug resistance remains as one of the major challenges in melanoma therapy. It is well known that tumour cells undergo phenotypic switching during melanoma progression, increasing melanoma plasticity and resistance to mitogen-activated protein kinase inhibitors (MAPKi).We investigated the melanoma phenotype switching using a partial reprogramming model to de-differentiate murine melanoma cells and target melanoma therapy adaptation against MAPKi.Here, we show that partially reprogrammed cells are a less proliferative and more de-differentiated cell population, expressing a gene signature for stemness and suppressing melanocyte-specific markers. To investigate adaptation to MAPKi, cells were exposed to B-Raf Proto-Oncogene (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors. De-differentiated cells became less sensitive to MAPKi, showed increased cell viability and decreased apoptosis. Furthermore, T-type calcium channels expression increased in adaptive murine cells and in human adaptive melanoma cells. Treatment with the calcium channel blocker mibefradil induced cell death, differentiation and susceptibility to MAPKi in vitro and in vivo.In summary, we show that partial reprogramming of melanoma cells induces de-differentiation and adaptation to MAPKi. Moreover, we postulated a calcium channel blocker such as mibefradil, as a potential candidate to restore sensitivity to MAPKi in adaptive melanoma cells.
000166360 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000166360 588__ $$aDataset connected to CrossRef, PubMed,
000166360 7001_ $$0P:(DE-He78)78e29fad12f1be2fe3d0a8d411f97211$$aHüser, Laura$$b1$$udkfz
000166360 7001_ $$0P:(DE-He78)32c5110cd42ee8a96b18a3e8909bd0a9$$aFederico, Aniello$$b2$$udkfz
000166360 7001_ $$0P:(DE-He78)20c06d682ef2c877e2610cd1984daea5$$aSachindra, Sachindra$$b3
000166360 7001_ $$aWolff, Gretchen$$b4
000166360 7001_ $$0P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aHielscher, Thomas$$b5$$udkfz
000166360 7001_ $$0P:(DE-He78)5f0b1c9863f44d0695555ee3c22b9758$$aNovak, Daniel$$b6$$udkfz
000166360 7001_ $$aMadrigal-Gamboa, Verónica$$b7
000166360 7001_ $$0P:(DE-He78)f1f0076fc72606659a5df2605acce91b$$aSun, Qian$$b8$$udkfz
000166360 7001_ $$0P:(DE-He78)61de47f47323d5d0b1700e8213e5179f$$aVierthaler, Marlene$$b9$$udkfz
000166360 7001_ $$0P:(DE-He78)f89c856740c99008f4fbc1efa501d4f9$$aLarribère, Lionel$$b10$$udkfz
000166360 7001_ $$0P:(DE-He78)38be34240daf8b47325afc7910e77f7b$$aUmansky, Viktor$$b11$$udkfz
000166360 7001_ $$0P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3$$aUtikal, Jochen$$b12$$eLast author$$udkfz
000166360 773__ $$0PERI:(DE-600)2002452-6$$a10.1038/s41416-020-0751-8$$gVol. 122, no. 7, p. 1023 - 1036$$n7$$p1023 - 1036$$tBritish journal of cancer$$v122$$x1532-1827$$y2020
000166360 909CO $$ooai:inrepo02.dkfz.de:166360$$pVDB
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)78e29fad12f1be2fe3d0a8d411f97211$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)32c5110cd42ee8a96b18a3e8909bd0a9$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)20c06d682ef2c877e2610cd1984daea5$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5f0b1c9863f44d0695555ee3c22b9758$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f1f0076fc72606659a5df2605acce91b$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)61de47f47323d5d0b1700e8213e5179f$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f89c856740c99008f4fbc1efa501d4f9$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)38be34240daf8b47325afc7910e77f7b$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000166360 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000166360 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000166360 9141_ $$y2020
000166360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRIT J CANCER : 2018$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-04
000166360 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBRIT J CANCER : 2018$$d2020-09-04
000166360 9201_ $$0I:(DE-He78)A370-20160331$$kA370$$lKKE Dermatoonkologie$$x0
000166360 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000166360 980__ $$ajournal
000166360 980__ $$aVDB
000166360 980__ $$aI:(DE-He78)A370-20160331
000166360 980__ $$aI:(DE-He78)C060-20160331
000166360 980__ $$aUNRESTRICTED