000166369 001__ 166369
000166369 005__ 20240229133520.0
000166369 0247_ $$2doi$$a10.1016/j.toxlet.2020.11.018
000166369 0247_ $$2pmid$$apmid:33232777
000166369 0247_ $$2ISSN$$a0378-4274
000166369 0247_ $$2ISSN$$a1879-3169
000166369 037__ $$aDKFZ-2020-02858
000166369 041__ $$aeng
000166369 082__ $$a610
000166369 1001_ $$0P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aHolland-Letz, T.$$b0$$eFirst author
000166369 245__ $$aAn R-shiny application to calculate optimal designs for single substance and interaction trials in dose response experiments.
000166369 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000166369 3367_ $$2DRIVER$$aarticle
000166369 3367_ $$2DataCite$$aOutput Types/Journal article
000166369 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610470985_25477
000166369 3367_ $$2BibTeX$$aARTICLE
000166369 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166369 3367_ $$00$$2EndNote$$aJournal Article
000166369 500__ $$a#EA:C060#LA:C060#
000166369 520__ $$aOptimal experimental design theory proposes choosing specific settings in experimental trials in order to maximize the precision of the resulting parameter estimates. In dose response experiments, this corresponds to choosing the optimal dose levels for every available observation, and can be applied both to singular dose-response relationships and to interaction experiments where two substances are given simultaneously at several different mixture ratios ('ray designs'). While the theory of experimental design for this situation is well developed, the mathematical complexity prevents widespread use in practical applications. A simple to use application making the theory accessible to practitioners is thus very desirable.Results from established optimal experimental design theory are applied to dose response applications, focusing on log-logistic and Weibull class dose response functions. Suitable optimal design algorithms to solve these problems are implemented into an R-shiny based online application.The application provides an interface to easily calculate D-optimal designs not only for singular dose experiments, but also for interaction trials with several combination rays of substances. Furthermore, the app also allows evaluating the efficiency of existing candidate designs, and finally allows construction of designs which perform robustly under different assumptions in regard to the true parameters.
000166369 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000166369 588__ $$aDataset connected to CrossRef, PubMed,
000166369 650_7 $$2Other$$aCombination index
000166369 650_7 $$2Other$$aD-optimal design
000166369 650_7 $$2Other$$aDose–response studies
000166369 650_7 $$2Other$$aOptimal experimental design
000166369 650_7 $$2Other$$aR-shiny
000166369 650_7 $$2Other$$aWeb application
000166369 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, A.$$b1$$eLast author
000166369 773__ $$0PERI:(DE-600)1500784-4$$a10.1016/j.toxlet.2020.11.018$$gVol. 337, p. 18 - 27$$p18 - 27$$tToxicology letters$$v337$$x0378-4274$$y2021
000166369 909CO $$ooai:inrepo02.dkfz.de:166369$$pVDB
000166369 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-22$$wger
000166369 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTOXICOL LETT : 2018$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-22
000166369 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-22
000166369 9141_ $$y2021
000166369 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)457c042884c901eb0a02c18bb1d30103$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000166369 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000166369 9130_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000166369 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000166369 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000166369 980__ $$ajournal
000166369 980__ $$aVDB
000166369 980__ $$aI:(DE-He78)C060-20160331
000166369 980__ $$aUNRESTRICTED