001     166369
005     20240229133520.0
024 7 _ |2 doi
|a 10.1016/j.toxlet.2020.11.018
024 7 _ |2 pmid
|a pmid:33232777
024 7 _ |2 ISSN
|a 0378-4274
024 7 _ |2 ISSN
|a 1879-3169
037 _ _ |a DKFZ-2020-02858
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|a Holland-Letz, T.
|b 0
|e First author
245 _ _ |a An R-shiny application to calculate optimal designs for single substance and interaction trials in dose response experiments.
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2021
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1610470985_25477
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a #EA:C060#LA:C060#
520 _ _ |a Optimal experimental design theory proposes choosing specific settings in experimental trials in order to maximize the precision of the resulting parameter estimates. In dose response experiments, this corresponds to choosing the optimal dose levels for every available observation, and can be applied both to singular dose-response relationships and to interaction experiments where two substances are given simultaneously at several different mixture ratios ('ray designs'). While the theory of experimental design for this situation is well developed, the mathematical complexity prevents widespread use in practical applications. A simple to use application making the theory accessible to practitioners is thus very desirable.Results from established optimal experimental design theory are applied to dose response applications, focusing on log-logistic and Weibull class dose response functions. Suitable optimal design algorithms to solve these problems are implemented into an R-shiny based online application.The application provides an interface to easily calculate D-optimal designs not only for singular dose experiments, but also for interaction trials with several combination rays of substances. Furthermore, the app also allows evaluating the efficiency of existing candidate designs, and finally allows construction of designs which perform robustly under different assumptions in regard to the true parameters.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |2 Other
|a Combination index
650 _ 7 |2 Other
|a D-optimal design
650 _ 7 |2 Other
|a Dose–response studies
650 _ 7 |2 Other
|a Optimal experimental design
650 _ 7 |2 Other
|a R-shiny
650 _ 7 |2 Other
|a Web application
700 1 _ |0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|a Kopp-Schneider, A.
|b 1
|e Last author
773 _ _ |0 PERI:(DE-600)1500784-4
|a 10.1016/j.toxlet.2020.11.018
|g Vol. 337, p. 18 - 27
|p 18 - 27
|t Toxicology letters
|v 337
|x 0378-4274
|y 2021
909 C O |o oai:inrepo02.dkfz.de:166369
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|a Deutsches Krebsforschungszentrum
|b 0
|k DKFZ
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|a Deutsches Krebsforschungszentrum
|b 1
|k DKFZ
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2020-08-22
|w ger
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)1190
|2 StatID
|a DBCoverage
|b Biological Abstracts
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b TOXICOL LETT : 2018
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
|d 2020-08-22
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-08-22
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21