Home > Publications database > An R-shiny application to calculate optimal designs for single substance and interaction trials in dose response experiments. > print |
001 | 166369 | ||
005 | 20240229133520.0 | ||
024 | 7 | _ | |2 doi |a 10.1016/j.toxlet.2020.11.018 |
024 | 7 | _ | |2 pmid |a pmid:33232777 |
024 | 7 | _ | |2 ISSN |a 0378-4274 |
024 | 7 | _ | |2 ISSN |a 1879-3169 |
037 | _ | _ | |a DKFZ-2020-02858 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
100 | 1 | _ | |0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103 |a Holland-Letz, T. |b 0 |e First author |
245 | _ | _ | |a An R-shiny application to calculate optimal designs for single substance and interaction trials in dose response experiments. |
260 | _ | _ | |a Amsterdam [u.a.] |b Elsevier Science |c 2021 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1610470985_25477 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
500 | _ | _ | |a #EA:C060#LA:C060# |
520 | _ | _ | |a Optimal experimental design theory proposes choosing specific settings in experimental trials in order to maximize the precision of the resulting parameter estimates. In dose response experiments, this corresponds to choosing the optimal dose levels for every available observation, and can be applied both to singular dose-response relationships and to interaction experiments where two substances are given simultaneously at several different mixture ratios ('ray designs'). While the theory of experimental design for this situation is well developed, the mathematical complexity prevents widespread use in practical applications. A simple to use application making the theory accessible to practitioners is thus very desirable.Results from established optimal experimental design theory are applied to dose response applications, focusing on log-logistic and Weibull class dose response functions. Suitable optimal design algorithms to solve these problems are implemented into an R-shiny based online application.The application provides an interface to easily calculate D-optimal designs not only for singular dose experiments, but also for interaction trials with several combination rays of substances. Furthermore, the app also allows evaluating the efficiency of existing candidate designs, and finally allows construction of designs which perform robustly under different assumptions in regard to the true parameters. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |x 0 |f POF IV |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, |
650 | _ | 7 | |2 Other |a Combination index |
650 | _ | 7 | |2 Other |a D-optimal design |
650 | _ | 7 | |2 Other |a Dose–response studies |
650 | _ | 7 | |2 Other |a Optimal experimental design |
650 | _ | 7 | |2 Other |a R-shiny |
650 | _ | 7 | |2 Other |a Web application |
700 | 1 | _ | |0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596 |a Kopp-Schneider, A. |b 1 |e Last author |
773 | _ | _ | |0 PERI:(DE-600)1500784-4 |a 10.1016/j.toxlet.2020.11.018 |g Vol. 337, p. 18 - 27 |p 18 - 27 |t Toxicology letters |v 337 |x 0378-4274 |y 2021 |
909 | C | O | |o oai:inrepo02.dkfz.de:166369 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)2036810-0 |6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103 |a Deutsches Krebsforschungszentrum |b 0 |k DKFZ |
910 | 1 | _ | |0 I:(DE-588b)2036810-0 |6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596 |a Deutsches Krebsforschungszentrum |b 1 |k DKFZ |
913 | 0 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF3-310 |0 G:(DE-HGF)POF3-313 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-300 |4 G:(DE-HGF)POF |v Cancer risk factors and prevention |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |d 2020-08-22 |w ger |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)1190 |2 StatID |a DBCoverage |b Biological Abstracts |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b TOXICOL LETT : 2018 |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2020-08-22 |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |d 2020-08-22 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|