000166380 001__ 166380
000166380 005__ 20240229133520.0
000166380 0247_ $$2doi$$a10.1093/bioinformatics/btaa764
000166380 0247_ $$2ISSN$$a0266-7061
000166380 0247_ $$2ISSN$$a1367-4803
000166380 0247_ $$2ISSN$$a1367-4811
000166380 0247_ $$2ISSN$$a1460-2059
000166380 0247_ $$2altmetric$$aaltmetric:89287282
000166380 0247_ $$2pmid$$apmid:32871006
000166380 037__ $$aDKFZ-2020-02868
000166380 041__ $$aEnglish
000166380 082__ $$a570
000166380 1001_ $$aStammler, Sebastian$$b0
000166380 245__ $$aMainzelliste SecureEpiLinker (MainSEL): Privacy-Preserving Record Linkage using Secure Multi-Party Computation
000166380 260__ $$aOxford$$bOxford Univ. Press$$c2022
000166380 3367_ $$2DRIVER$$aarticle
000166380 3367_ $$2DataCite$$aOutput Types/Journal article
000166380 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1647357406_8939
000166380 3367_ $$2BibTeX$$aARTICLE
000166380 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166380 3367_ $$00$$2EndNote$$aJournal Article
000166380 500__ $$aVolume 38, Issue 6, 15 March 2022, Pages 1657–1668 / #LA:E260#
000166380 520__ $$aMotivation: Record Linkage has versatile applications in real-world data analysis contexts, where several data sets need to be linked on the record level in the absence of any exact identifier connecting related records. An example are medical databases of patients, spread across institutions, that have to be linked on personally identifiable entries like name, date of birth or ZIP code. At the same time, privacy laws may prohibit the exchange of this personally identifiable information (PII) across institutional boundaries, ruling out the outsourcing of the record linkage task to a trusted third party. We propose to employ privacy-preserving record linkage (PPRL) techniques that prevent, to various degrees, the leakage of PII while still allowing for the linkage of related records.Results: We develop a framework for fault-tolerant PPRL using secure multi-party computation with the medical record keeping software Mainzelliste as the data source. Our solution does not rely on any trusted third party and all PII is guaranteed to not leak under common cryptographic security assumptions. Benchmarks show the feasibility of our approach in realistic networking settings: linkage of a patient record against a database of 10.000 records can be done in 48s over a heavily delayed (100ms) network connection, or 3.9s with a low-latency connection.Availability and implementation: The source code of the sMPC node is freely available on Github at https://github.com/medicalinformatics/SecureEpilinker subject to the AGPLv3 license. The source code of the modified Mainzelliste is available at https://github.com/medicalinformatics/MainzellisteSEL.
000166380 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000166380 588__ $$aDataset connected to CrossRef
000166380 7001_ $$aKussel, Tobias$$b1
000166380 7001_ $$aSchoppmann, Phillipp$$b2
000166380 7001_ $$0P:(DE-He78)e9d3651370efc67cd3e2a5d63a06c352$$aStampe, Florian$$b3
000166380 7001_ $$0P:(DE-He78)63baa06d83c1f44c7df6dc8b856797b7$$aTremper, Galina$$b4
000166380 7001_ $$aKatzenbeisser, Stefan$$b5
000166380 7001_ $$aHamacher, Kay$$b6
000166380 7001_ $$0P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aLablans, Martin$$b7$$eLast author
000166380 773__ $$0PERI:(DE-600)1468345-3$$a10.1093/bioinformatics/btaa764$$gp. btaa764$$n6$$p1657–1668$$tBioinformatics$$v38$$x1460-2059$$y2022
000166380 909CO $$ooai:inrepo02.dkfz.de:166380$$pVDB
000166380 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e9d3651370efc67cd3e2a5d63a06c352$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000166380 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)63baa06d83c1f44c7df6dc8b856797b7$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000166380 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e4ad7b4e684492de43cfcb12e5397439$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000166380 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000166380 9141_ $$y2021
000166380 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000166380 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-11
000166380 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000166380 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-09$$wger
000166380 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000166380 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000166380 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOINFORMATICS : 2021$$d2022-11-09
000166380 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09
000166380 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09
000166380 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000166380 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000166380 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000166380 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-09
000166380 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBIOINFORMATICS : 2021$$d2022-11-09
000166380 9201_ $$0I:(DE-He78)E260-20160331$$kE260$$lVerbundinformationssysteme$$x0
000166380 980__ $$ajournal
000166380 980__ $$aVDB
000166380 980__ $$aI:(DE-He78)E260-20160331
000166380 980__ $$aUNRESTRICTED