000166497 001__ 166497
000166497 005__ 20240229133522.0
000166497 0247_ $$2doi$$a10.1088/1361-6560/abd4b9
000166497 0247_ $$2pmid$$apmid:33333496
000166497 0247_ $$2ISSN$$a0031-9155
000166497 0247_ $$2ISSN$$a1361-6560
000166497 037__ $$aDKFZ-2020-02940
000166497 041__ $$aeng
000166497 082__ $$a530
000166497 1001_ $$0P:(DE-He78)d6ff1f04f2e927518e4290cc7dec3133$$aElter, Alina$$b0$$eFirst author$$udkfz
000166497 245__ $$aDevelopment of phantom materials with independently adjustable CT- and MR-contrast at 0.35, 1.5 and 3T.
000166497 260__ $$aBristol$$bIOP Publ.$$c2021
000166497 3367_ $$2DRIVER$$aarticle
000166497 3367_ $$2DataCite$$aOutput Types/Journal article
000166497 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623236412_13534
000166497 3367_ $$2BibTeX$$aARTICLE
000166497 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166497 3367_ $$00$$2EndNote$$aJournal Article
000166497 500__ $$a#EA:E040#LA:E040# / 2021 Feb 3;66(4):045013
000166497 520__ $$aQuality assurance in magnetic resonance (MR)-guided radiotherapy (RT) lacks anthropomorphic phantoms that represent tissue-equivalent imaging contrast in both computed tomography (CT) and MR imaging. In this study, we developed phantom materials with individually adjustable CT value as well as T1- and T2-relaxation times in MR imaging at three different magnetic field strengths. Additionally, their experimental stopping power ratio (SPR) for carbon ions was compared with predictions based on single- and dual-energy CT. Ni-DTPA doped agarose gels were used for individual adjustment of T1and T2at 0.35,1.5 and 3.0 T. The CT value was varied by adding potassium chloride (KCl). By multiple linear regression, equations for the determination of agarose, Ni-DTPA and KCl concentrations for given T1, T2and CT values were derived and employed to produce nine specific soft tissue samples. Experimental T1, T2and CT values of these soft tissue samples were compared with predictions and additionally, carbon ion SPR obtained by range measurements were compared with predictions based on single- and dual-energy CT. The measured CT value, T1and T2of the produced soft tissue samples agreed very well with predictions based on the derived equations with mean deviations of less than 3.5 %. While single-energy CT overestimates the measured SPR of the soft tissue samples, the dual-energy CT-based predictions showed a mean SPR deviation of only (0.2±0.3) %. To conclude, anthropomorphic phantom materials with independently adjustable CT values as well as T1and T2relaxation times at three different magnetic field strengths were developed. The derived equations describe the material specific relaxation times and the CT value in dependence on agarose, Ni-DTPA and KCl concentrations as well as the chemical composition of the materials based on given T1,T2and CT value. Dual-energy CT allows accurate prediction of the carbon ion range in these materials.
000166497 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000166497 588__ $$aDataset connected to CrossRef, PubMed,
000166497 650_7 $$2Other$$aMR-guided radiotherapy (MRgRT)
000166497 650_7 $$2Other$$aend-to-end tests
000166497 650_7 $$2Other$$amagnetic resonance imaging (MRI) and computed tomography (CT) contrast
000166497 650_7 $$2Other$$aphantom materials
000166497 650_7 $$2Other$$aquality assurance
000166497 7001_ $$0P:(DE-He78)fb88b16550eaa8f0583422c5add94ef1$$aHellwich, Emily$$b1$$udkfz
000166497 7001_ $$0P:(DE-He78)e43f53a20835bd25906f1795558151a3$$aDorsch, Stefan$$b2$$udkfz
000166497 7001_ $$0P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa$$aSchäfer, Martin$$b3$$udkfz
000166497 7001_ $$0P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07$$aRunz, Armin$$b4$$udkfz
000166497 7001_ $$aKlüter, Sebastian$$b5
000166497 7001_ $$aAckermann, Benjamin$$b6
000166497 7001_ $$aBrons, Stephan$$b7
000166497 7001_ $$0P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aKarger, Christian P$$b8$$udkfz
000166497 7001_ $$0P:(DE-He78)d26409e0d07007daf771142a945102ef$$aMann, Philipp$$b9$$eLast author$$udkfz
000166497 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/abd4b9$$n4$$p045013$$tPhysics in medicine and biology$$v66$$x1361-6560$$y2021
000166497 909CO $$ooai:inrepo02.dkfz.de:166497$$pVDB
000166497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d6ff1f04f2e927518e4290cc7dec3133$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000166497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb88b16550eaa8f0583422c5add94ef1$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000166497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e43f53a20835bd25906f1795558151a3$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000166497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000166497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000166497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000166497 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d26409e0d07007daf771142a945102ef$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000166497 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000166497 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000166497 9141_ $$y2021
000166497 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-09$$wger
000166497 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2020-09-09$$wger
000166497 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2018$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-09
000166497 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-09
000166497 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000166497 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x1
000166497 980__ $$ajournal
000166497 980__ $$aVDB
000166497 980__ $$aI:(DE-He78)E040-20160331
000166497 980__ $$aI:(DE-He78)E010-20160331
000166497 980__ $$aUNRESTRICTED