001     166497
005     20240229133522.0
024 7 _ |a 10.1088/1361-6560/abd4b9
|2 doi
024 7 _ |a pmid:33333496
|2 pmid
024 7 _ |a 0031-9155
|2 ISSN
024 7 _ |a 1361-6560
|2 ISSN
037 _ _ |a DKFZ-2020-02940
041 _ _ |a eng
082 _ _ |a 530
100 1 _ |a Elter, Alina
|0 P:(DE-He78)d6ff1f04f2e927518e4290cc7dec3133
|b 0
|e First author
|u dkfz
245 _ _ |a Development of phantom materials with independently adjustable CT- and MR-contrast at 0.35, 1.5 and 3T.
260 _ _ |a Bristol
|c 2021
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1623236412_13534
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / 2021 Feb 3;66(4):045013
520 _ _ |a Quality assurance in magnetic resonance (MR)-guided radiotherapy (RT) lacks anthropomorphic phantoms that represent tissue-equivalent imaging contrast in both computed tomography (CT) and MR imaging. In this study, we developed phantom materials with individually adjustable CT value as well as T1- and T2-relaxation times in MR imaging at three different magnetic field strengths. Additionally, their experimental stopping power ratio (SPR) for carbon ions was compared with predictions based on single- and dual-energy CT. Ni-DTPA doped agarose gels were used for individual adjustment of T1and T2at 0.35,1.5 and 3.0 T. The CT value was varied by adding potassium chloride (KCl). By multiple linear regression, equations for the determination of agarose, Ni-DTPA and KCl concentrations for given T1, T2and CT values were derived and employed to produce nine specific soft tissue samples. Experimental T1, T2and CT values of these soft tissue samples were compared with predictions and additionally, carbon ion SPR obtained by range measurements were compared with predictions based on single- and dual-energy CT. The measured CT value, T1and T2of the produced soft tissue samples agreed very well with predictions based on the derived equations with mean deviations of less than 3.5 %. While single-energy CT overestimates the measured SPR of the soft tissue samples, the dual-energy CT-based predictions showed a mean SPR deviation of only (0.2±0.3) %. To conclude, anthropomorphic phantom materials with independently adjustable CT values as well as T1and T2relaxation times at three different magnetic field strengths were developed. The derived equations describe the material specific relaxation times and the CT value in dependence on agarose, Ni-DTPA and KCl concentrations as well as the chemical composition of the materials based on given T1,T2and CT value. Dual-energy CT allows accurate prediction of the carbon ion range in these materials.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a MR-guided radiotherapy (MRgRT)
|2 Other
650 _ 7 |a end-to-end tests
|2 Other
650 _ 7 |a magnetic resonance imaging (MRI) and computed tomography (CT) contrast
|2 Other
650 _ 7 |a phantom materials
|2 Other
650 _ 7 |a quality assurance
|2 Other
700 1 _ |a Hellwich, Emily
|0 P:(DE-He78)fb88b16550eaa8f0583422c5add94ef1
|b 1
|u dkfz
700 1 _ |a Dorsch, Stefan
|0 P:(DE-He78)e43f53a20835bd25906f1795558151a3
|b 2
|u dkfz
700 1 _ |a Schäfer, Martin
|0 P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa
|b 3
|u dkfz
700 1 _ |a Runz, Armin
|0 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
|b 4
|u dkfz
700 1 _ |a Klüter, Sebastian
|b 5
700 1 _ |a Ackermann, Benjamin
|b 6
700 1 _ |a Brons, Stephan
|b 7
700 1 _ |a Karger, Christian P
|0 P:(DE-He78)b43076fb0a30230e4323887c0c980046
|b 8
|u dkfz
700 1 _ |a Mann, Philipp
|0 P:(DE-He78)d26409e0d07007daf771142a945102ef
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1088/1361-6560/abd4b9
|0 PERI:(DE-600)1473501-5
|n 4
|p 045013
|t Physics in medicine and biology
|v 66
|y 2021
|x 1361-6560
909 C O |o oai:inrepo02.dkfz.de:166497
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d6ff1f04f2e927518e4290cc7dec3133
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)fb88b16550eaa8f0583422c5add94ef1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)e43f53a20835bd25906f1795558151a3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)3373acf5d3b93adfd9ea973cf2d218aa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)b43076fb0a30230e4323887c0c980046
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)d26409e0d07007daf771142a945102ef
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-09
|w ger
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-09-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MED BIOL : 2018
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-09
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21