000166498 001__ 166498
000166498 005__ 20240229133522.0
000166498 0247_ $$2doi$$a10.1002/mp.14658
000166498 0247_ $$2pmid$$apmid:33332644
000166498 0247_ $$2ISSN$$a0094-2405
000166498 0247_ $$2ISSN$$a1522-8541
000166498 0247_ $$2ISSN$$a2473-4209
000166498 0247_ $$2altmetric$$aaltmetric:83868997
000166498 037__ $$aDKFZ-2020-02941
000166498 041__ $$aeng
000166498 082__ $$a610
000166498 1001_ $$0P:(DE-He78)05d1465abf6918875d2df2781d7aec35$$aNeishabouri, Ahmad$$b0$$eFirst author$$udkfz
000166498 245__ $$aLong short-term memory networks for proton dose calculation in highly heterogeneous tissues.
000166498 260__ $$aCollege Park, Md.$$bAAPM$$c2021
000166498 3367_ $$2DRIVER$$aarticle
000166498 3367_ $$2DataCite$$aOutput Types/Journal article
000166498 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1623236352_13534
000166498 3367_ $$2BibTeX$$aARTICLE
000166498 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166498 3367_ $$00$$2EndNote$$aJournal Article
000166498 500__ $$a#EA:E040#LA:E040# / 2021 Apr;48(4):1893-1908
000166498 520__ $$aTo investigate the feasibility and accuracy of proton dose calculations with artificial neural networks (ANN) in challenging 3D anatomies.A novel proton dose calculation approach was designed based on the application of a long short-term memory (LSTM) network. It processes the 3D geometry as a sequence of two-dimensional (2D) computed tomography slices and outputs a corresponding sequence of (2D) slices that forms the 3D dose distribution. The general accuracy of the approach is investigated in comparison to Monte Carlo reference simulations and pencil beam dose calculations. We consider both artificial phantom geometries and clinically realistic lung cases for three different pencil beam energies.For artificial phantom cases, the trained LSTM model achieved a 98:57% γ -index pass rate ([1%, 3mm]) in comparison to MC simulations for a pencil beam with initial energy 104:25MeV. For a lung patient case, we observe pass rates of 98:56%, 97:74%, and 94:51% for an initial energy of 67:85MeV, 104:25MeV, and 134:68MeV, respectively. Applying the LSTM dose calculation on patient cases that were fully excluded from the training process yields an average - γ index pass rate of 97:85%.LSTM networks are well suited for proton dose calculation tasks. Further research, especially regarding model generalization and computational performance in comparison to established dose calculation methods, is warranted.
000166498 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000166498 588__ $$aDataset connected to CrossRef, PubMed,
000166498 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b1$$udkfz
000166498 7001_ $$aMairani, Andrea$$b2
000166498 7001_ $$aKöthe, Ullrich$$b3
000166498 7001_ $$0P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aBangert, Mark$$b4$$eLast author$$udkfz
000166498 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.14658$$gp. mp.14658$$n4$$p1893-1908$$tMedical physics$$v48$$x2473-4209$$y2021
000166498 909CO $$ooai:inrepo02.dkfz.de:166498$$pVDB
000166498 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)05d1465abf6918875d2df2781d7aec35$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000166498 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000166498 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000166498 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000166498 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000166498 9141_ $$y2021
000166498 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-29$$wger
000166498 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2018$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-29
000166498 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-29
000166498 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000166498 980__ $$ajournal
000166498 980__ $$aVDB
000166498 980__ $$aI:(DE-He78)E040-20160331
000166498 980__ $$aUNRESTRICTED