001     166498
005     20240229133522.0
024 7 _ |a 10.1002/mp.14658
|2 doi
024 7 _ |a pmid:33332644
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
024 7 _ |a altmetric:83868997
|2 altmetric
037 _ _ |a DKFZ-2020-02941
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Neishabouri, Ahmad
|0 P:(DE-He78)05d1465abf6918875d2df2781d7aec35
|b 0
|e First author
|u dkfz
245 _ _ |a Long short-term memory networks for proton dose calculation in highly heterogeneous tissues.
260 _ _ |a College Park, Md.
|c 2021
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1623236352_13534
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / 2021 Apr;48(4):1893-1908
520 _ _ |a To investigate the feasibility and accuracy of proton dose calculations with artificial neural networks (ANN) in challenging 3D anatomies.A novel proton dose calculation approach was designed based on the application of a long short-term memory (LSTM) network. It processes the 3D geometry as a sequence of two-dimensional (2D) computed tomography slices and outputs a corresponding sequence of (2D) slices that forms the 3D dose distribution. The general accuracy of the approach is investigated in comparison to Monte Carlo reference simulations and pencil beam dose calculations. We consider both artificial phantom geometries and clinically realistic lung cases for three different pencil beam energies.For artificial phantom cases, the trained LSTM model achieved a 98:57% γ -index pass rate ([1%, 3mm]) in comparison to MC simulations for a pencil beam with initial energy 104:25MeV. For a lung patient case, we observe pass rates of 98:56%, 97:74%, and 94:51% for an initial energy of 67:85MeV, 104:25MeV, and 134:68MeV, respectively. Applying the LSTM dose calculation on patient cases that were fully excluded from the training process yields an average - γ index pass rate of 97:85%.LSTM networks are well suited for proton dose calculation tasks. Further research, especially regarding model generalization and computational performance in comparison to established dose calculation methods, is warranted.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Wahl, Niklas
|0 P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336
|b 1
|u dkfz
700 1 _ |a Mairani, Andrea
|b 2
700 1 _ |a Köthe, Ullrich
|b 3
700 1 _ |a Bangert, Mark
|0 P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1002/mp.14658
|g p. mp.14658
|0 PERI:(DE-600)1466421-5
|n 4
|p 1893-1908
|t Medical physics
|v 48
|y 2021
|x 2473-4209
909 C O |o oai:inrepo02.dkfz.de:166498
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)05d1465abf6918875d2df2781d7aec35
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)fec480a99b1869ec73688e95c2f0a43b
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-09-29
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2018
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-09-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-29
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21