000166539 001__ 166539
000166539 005__ 20251113153438.0
000166539 0247_ $$2doi$$a10.1016/j.cmet.2020.12.002
000166539 0247_ $$2pmid$$apmid:33326752
000166539 0247_ $$2ISSN$$a1550-4131
000166539 0247_ $$2ISSN$$a1932-7420
000166539 0247_ $$2altmetric$$aaltmetric:96032080
000166539 037__ $$aDKFZ-2020-02982
000166539 041__ $$aeng
000166539 082__ $$a570
000166539 1001_ $$aLee, Won Dong$$b0
000166539 245__ $$aTumor Reliance on Cytosolic versus Mitochondrial One-Carbon Flux Depends on Folate Availability.
000166539 260__ $$aCambridge, Mass.$$bCell Press$$c2021
000166539 3367_ $$2DRIVER$$aarticle
000166539 3367_ $$2DataCite$$aOutput Types/Journal article
000166539 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1763044462_4079999
000166539 3367_ $$2BibTeX$$aARTICLE
000166539 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166539 3367_ $$00$$2EndNote$$aJournal Article
000166539 500__ $$a2021 Jan 5;33(1):190-198.e6 / #DKFZ-MOST-Ca173#
000166539 520__ $$aFolate metabolism supplies one-carbon (1C) units for biosynthesis and methylation and has long been a target for cancer chemotherapy. Mitochondrial serine catabolism is considered the sole contributor of folate-mediated 1C units in proliferating cancer cells. Here, we show that under physiological folate levels in the cell environment, cytosolic serine-hydroxymethyltransferase (SHMT1) is the predominant source of 1C units in a variety of cancers, while mitochondrial 1C flux is overly repressed. Tumor-specific reliance on cytosolic 1C flux is associated with poor capacity to retain intracellular folates, which is determined by the expression of SLC19A1, which encodes the reduced folate carrier (RFC). We show that silencing SHMT1 in cells with low RFC expression impairs pyrimidine biosynthesis and tumor growth in vivo. Overall, our findings reveal major diversity in cancer cell utilization of the cytosolic versus mitochondrial folate cycle across tumors and SLC19A1 expression as a marker for increased reliance on SHMT1.
000166539 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000166539 588__ $$aDataset connected to CrossRef, PubMed,
000166539 650_7 $$2Other$$aSHMT
000166539 650_7 $$2Other$$acancer metabolism
000166539 650_7 $$2Other$$afolate cycle
000166539 650_7 $$2Other$$ain vivo
000166539 650_7 $$2Other$$aisotope tracing
000166539 650_7 $$2Other$$ametabolomics
000166539 650_7 $$2Other$$amitochondria
000166539 650_7 $$2Other$$aone-carbon flux
000166539 650_7 $$2Other$$aphysiologic medium
000166539 650_7 $$2Other$$areduced folate carrier
000166539 650_7 $$2Other$$aserine hydroxymethyltransferase
000166539 7001_ $$0P:(DE-He78)5b40dbc49d2c1161db6578db740304e4$$aPirona, Anna Chiara$$b1
000166539 7001_ $$aSarvin, Boris$$b2
000166539 7001_ $$aStern, Alon$$b3
000166539 7001_ $$aNevo-Dinur, Keren$$b4
000166539 7001_ $$aBesser, Elazar$$b5
000166539 7001_ $$aSarvin, Nikita$$b6
000166539 7001_ $$aLagziel, Shoval$$b7
000166539 7001_ $$aMukha, Dzmitry$$b8
000166539 7001_ $$aRaz, Shachar$$b9
000166539 7001_ $$aAizenshtein, Elina$$b10
000166539 7001_ $$aShlomi, Tomer$$b11
000166539 773__ $$0PERI:(DE-600)2174469-5$$a10.1016/j.cmet.2020.12.002$$gp. S1550413120306574$$n1$$p190-198.e6$$tCell metabolism$$v33$$x1550-4131$$y2021
000166539 909CO $$ooai:inrepo02.dkfz.de:166539$$pVDB
000166539 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5b40dbc49d2c1161db6578db740304e4$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000166539 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000166539 9130_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000166539 9141_ $$y2021
000166539 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL METAB : 2018$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-06
000166539 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bCELL METAB : 2018$$d2020-09-06
000166539 9201_ $$0I:(DE-He78)B070-20160331$$kB070$$lAG Funktionelle Genomanalyse$$x0
000166539 980__ $$ajournal
000166539 980__ $$aVDB
000166539 980__ $$aI:(DE-He78)B070-20160331
000166539 980__ $$aUNRESTRICTED