000166540 001__ 166540
000166540 005__ 20240229133523.0
000166540 0247_ $$2doi$$a10.1002/ijc.33437
000166540 0247_ $$2pmid$$apmid:33320964
000166540 0247_ $$2ISSN$$a0020-7136
000166540 0247_ $$2ISSN$$a1097-0215
000166540 0247_ $$2altmetric$$aaltmetric:96085714
000166540 037__ $$aDKFZ-2020-02983
000166540 041__ $$aeng
000166540 082__ $$a610
000166540 1001_ $$00000-0002-1348-3350$$aHeisser, Thomas$$b0$$eFirst author
000166540 245__ $$aEffects of Screening for Colorectal Cancer: Development, Documentation and Validation of a Multistate Markov Model.
000166540 260__ $$aBognor Regis$$bWiley-Liss$$c2021
000166540 3367_ $$2DRIVER$$aarticle
000166540 3367_ $$2DataCite$$aOutput Types/Journal article
000166540 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1614872288_29951
000166540 3367_ $$2BibTeX$$aARTICLE
000166540 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166540 3367_ $$00$$2EndNote$$aJournal Article
000166540 500__ $$a2021 Apr 15;148(8):1973-1981#EA:C070#LA:C070#
000166540 520__ $$aSimulation models are a powerful tool to overcome gaps of evidence needed to inform medical decision making. Here, we present development and application of a multistate Markov model to simulate effects of colorectal cancer (CRC) screening, along with a thorough assessment of the model's ability to reproduce real-life outcomes. Firstly, we provide a comprehensive documentation of the model development, structure and assumptions. Secondly, to assess the model's external validity, we compared model-derived cumulative incidence and prevalences of colorectal neoplasms to (1) results from KolosSal, a study in German screening colonoscopy participants, (2) registry-based estimates of CRC incidence in Germany, and (3) outcome patterns of randomized sigmoidoscopy screening studies. We found that (1) more than 90% of observed prevalences in the KolosSal study were within the 95% confidence intervals of the model-predicted neoplasm prevalences; (2) the 15-year cumulative CRC incidences estimated by simulations for the German population deviated by 0.0-0.2 percent units in men and 0.0-0.3 percent units in women when compared to corresponding registry-derived estimates; and (3) the time course of cumulative CRC incidence and mortality in the modelled intervention group and control group closely resembles the time course reported from sigmoidoscopy screening trials. Summarized, our model adequately predicted colorectal neoplasm prevalences and incidences in a German population for up to 25 years, with estimated patterns of the effect of screening colonoscopy resembling those seen in registry data and real-world studies. This suggests that the model may represent a valid tool to assess the comparative effectiveness of CRC screening strategies. This article is protected by copyright. All rights reserved.
000166540 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000166540 588__ $$aDataset connected to CrossRef, PubMed,
000166540 650_7 $$2Other$$acolorectal cancer
000166540 650_7 $$2Other$$amodelling
000166540 650_7 $$2Other$$ascreening
000166540 650_7 $$2Other$$avalidation
000166540 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b1
000166540 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b2$$eLast author
000166540 773__ $$0PERI:(DE-600)1474822-8$$a10.1002/ijc.33437$$gp. ijc.33437$$n8$$p1973-1981$$tInternational journal of cancer$$v148$$x1097-0215$$y2021
000166540 909CO $$ooai:inrepo02.dkfz.de:166540$$pVDB
000166540 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-1348-3350$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000166540 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000166540 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000166540 9130_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000166540 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000166540 9141_ $$y2021
000166540 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-08-32$$wger
000166540 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-32$$wger
000166540 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J CANCER : 2018$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000166540 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-32
000166540 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000166540 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000166540 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000166540 980__ $$ajournal
000166540 980__ $$aVDB
000166540 980__ $$aI:(DE-He78)C070-20160331
000166540 980__ $$aI:(DE-He78)C120-20160331
000166540 980__ $$aI:(DE-He78)HD01-20160331
000166540 980__ $$aUNRESTRICTED