001     166540
005     20240229133523.0
024 7 _ |a 10.1002/ijc.33437
|2 doi
024 7 _ |a pmid:33320964
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
024 7 _ |a altmetric:96085714
|2 altmetric
037 _ _ |a DKFZ-2020-02983
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Heisser, Thomas
|0 0000-0002-1348-3350
|b 0
|e First author
245 _ _ |a Effects of Screening for Colorectal Cancer: Development, Documentation and Validation of a Multistate Markov Model.
260 _ _ |a Bognor Regis
|c 2021
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1614872288_29951
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Apr 15;148(8):1973-1981#EA:C070#LA:C070#
520 _ _ |a Simulation models are a powerful tool to overcome gaps of evidence needed to inform medical decision making. Here, we present development and application of a multistate Markov model to simulate effects of colorectal cancer (CRC) screening, along with a thorough assessment of the model's ability to reproduce real-life outcomes. Firstly, we provide a comprehensive documentation of the model development, structure and assumptions. Secondly, to assess the model's external validity, we compared model-derived cumulative incidence and prevalences of colorectal neoplasms to (1) results from KolosSal, a study in German screening colonoscopy participants, (2) registry-based estimates of CRC incidence in Germany, and (3) outcome patterns of randomized sigmoidoscopy screening studies. We found that (1) more than 90% of observed prevalences in the KolosSal study were within the 95% confidence intervals of the model-predicted neoplasm prevalences; (2) the 15-year cumulative CRC incidences estimated by simulations for the German population deviated by 0.0-0.2 percent units in men and 0.0-0.3 percent units in women when compared to corresponding registry-derived estimates; and (3) the time course of cumulative CRC incidence and mortality in the modelled intervention group and control group closely resembles the time course reported from sigmoidoscopy screening trials. Summarized, our model adequately predicted colorectal neoplasm prevalences and incidences in a German population for up to 25 years, with estimated patterns of the effect of screening colonoscopy resembling those seen in registry data and real-world studies. This suggests that the model may represent a valid tool to assess the comparative effectiveness of CRC screening strategies. This article is protected by copyright. All rights reserved.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a colorectal cancer
|2 Other
650 _ 7 |a modelling
|2 Other
650 _ 7 |a screening
|2 Other
650 _ 7 |a validation
|2 Other
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 1
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 2
|e Last author
773 _ _ |a 10.1002/ijc.33437
|g p. ijc.33437
|0 PERI:(DE-600)1474822-8
|n 8
|p 1973-1981
|t International journal of cancer
|v 148
|y 2021
|x 1097-0215
909 C O |o oai:inrepo02.dkfz.de:166540
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 0000-0002-1348-3350
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-08-32
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-08-32
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2018
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-32
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-32
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-32
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-08-32
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21