001     166661
005     20240229133526.0
024 7 _ |a 10.1186/s12916-020-01826-0
|2 doi
024 7 _ |a pmid:33390155
|2 pmid
024 7 _ |a altmetric:97076052
|2 altmetric
037 _ _ |a DKFZ-2021-00028
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Aleksandrova, Krasimira
|b 0
245 _ _ |a Development and validation of a lifestyle-based model for colorectal cancer risk prediction: the LiFeCRC score.
260 _ _ |a Heidelberg [u.a.]
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610448259_25477
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nutrition and lifestyle have been long established as risk factors for colorectal cancer (CRC). Modifiable lifestyle behaviours bear potential to minimize long-term CRC risk; however, translation of lifestyle information into individualized CRC risk assessment has not been implemented. Lifestyle-based risk models may aid the identification of high-risk individuals, guide referral to screening and motivate behaviour change. We therefore developed and validated a lifestyle-based CRC risk prediction algorithm in an asymptomatic European population.The model was based on data from 255,482 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study aged 19 to 70 years who were free of cancer at study baseline (1992-2000) and were followed up to 31 September 2010. The model was validated in a sample comprising 74,403 participants selected among five EPIC centres. Over a median follow-up time of 15 years, there were 3645 and 981 colorectal cancer cases in the derivation and validation samples, respectively. Variable selection algorithms in Cox proportional hazard regression and random survival forest (RSF) were used to identify the best predictors among plausible predictor variables. Measures of discrimination and calibration were calculated in derivation and validation samples. To facilitate model communication, a nomogram and a web-based application were developed.The final selection model included age, waist circumference, height, smoking, alcohol consumption, physical activity, vegetables, dairy products, processed meat, and sugar and confectionary. The risk score demonstrated good discrimination overall and in sex-specific models. Harrell's C-index was 0.710 in the derivation cohort and 0.714 in the validation cohort. The model was well calibrated and showed strong agreement between predicted and observed risk. Random survival forest analysis suggested high model robustness. Beyond age, lifestyle data led to improved model performance overall (continuous net reclassification improvement = 0.307 (95% CI 0.264-0.352)), and especially for young individuals below 45 years (continuous net reclassification improvement = 0.364 (95% CI 0.084-0.575)).LiFeCRC score based on age and lifestyle data accurately identifies individuals at risk for incident colorectal cancer in European populations and could contribute to improved prevention through motivating lifestyle change at an individual level.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Cancer prevention
|2 Other
650 _ 7 |a Colorectal cancer
|2 Other
650 _ 7 |a Lifestyle behaviour
|2 Other
650 _ 7 |a Risk prediction
|2 Other
650 _ 7 |a Risk screening
|2 Other
700 1 _ |a Reichmann, Robin
|b 1
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 2
|u dkfz
700 1 _ |a Jenab, Mazda
|b 3
700 1 _ |a Bueno-de-Mesquita, H Bas
|b 4
700 1 _ |a Dahm, Christina C
|b 5
700 1 _ |a Eriksen, Anne Kirstine
|b 6
700 1 _ |a Tjønneland, Anne
|b 7
700 1 _ |a Artaud, Fanny
|b 8
700 1 _ |a Boutron-Ruault, Marie-Christine
|b 9
700 1 _ |a Severi, Gianluca
|b 10
700 1 _ |a Hüsing, Anika
|0 P:(DE-He78)6519c85d61a3def7974665471b8a4f74
|b 11
700 1 _ |a Trichopoulou, Antonia
|b 12
700 1 _ |a Karakatsani, Anna
|b 13
700 1 _ |a Peppa, Eleni
|b 14
700 1 _ |a Panico, Salvatore
|b 15
700 1 _ |a Masala, Giovanna
|b 16
700 1 _ |a Grioni, Sara
|b 17
700 1 _ |a Sacerdote, Carlotta
|b 18
700 1 _ |a Tumino, Rosario
|b 19
700 1 _ |a Elias, Sjoerd G
|b 20
700 1 _ |a May, Anne M
|b 21
700 1 _ |a Borch, Kristin B
|b 22
700 1 _ |a Sandanger, Torkjel M
|b 23
700 1 _ |a Skeie, Guri
|b 24
700 1 _ |a Sánchez, Maria-Jose
|b 25
700 1 _ |a Huerta, José María
|b 26
700 1 _ |a Sala, Núria
|b 27
700 1 _ |a Gurrea, Aurelio Barricarte
|b 28
700 1 _ |a Quirós, José Ramón
|b 29
700 1 _ |a Amiano, Pilar
|b 30
700 1 _ |a Berntsson, Jonna
|b 31
700 1 _ |a Drake, Isabel
|b 32
700 1 _ |a van Guelpen, Bethany
|b 33
700 1 _ |a Harlid, Sophia
|b 34
700 1 _ |a Key, Tim
|b 35
700 1 _ |a Weiderpass, Elisabete
|b 36
700 1 _ |a Aglago, Elom K
|b 37
700 1 _ |a Cross, Amanda J
|b 38
700 1 _ |a Tsilidis, Konstantinos K
|b 39
700 1 _ |a Riboli, Elio
|b 40
700 1 _ |a Gunter, Marc J
|b 41
773 _ _ |a 10.1186/s12916-020-01826-0
|g Vol. 19, no. 1, p. 1
|0 PERI:(DE-600)2131669-7
|n 1
|p 1
|t BMC medicine
|v 19
|y 2021
|x 1741-7015
909 C O |o oai:inrepo02.dkfz.de:166661
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)6519c85d61a3def7974665471b8a4f74
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC MED : 2018
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2020-09-05
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BMC MED : 2018
|d 2020-09-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-05
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21