000166677 001__ 166677
000166677 005__ 20240229133526.0
000166677 0247_ $$2doi$$a10.1002/mrm.28643
000166677 0247_ $$2pmid$$apmid:33400302
000166677 0247_ $$2ISSN$$a0740-3194
000166677 0247_ $$2ISSN$$a1522-2594
000166677 0247_ $$2altmetric$$aaltmetric:101058876
000166677 037__ $$aDKFZ-2021-00030
000166677 041__ $$aeng
000166677 082__ $$a610
000166677 1001_ $$00000-0002-4620-8216$$aHerrler, Jürgen$$b0
000166677 245__ $$aFast online-customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization.
000166677 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2021
000166677 3367_ $$2DRIVER$$aarticle
000166677 3367_ $$2DataCite$$aOutput Types/Journal article
000166677 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615279925_23717
000166677 3367_ $$2BibTeX$$aARTICLE
000166677 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000166677 3367_ $$00$$2EndNote$$aJournal Article
000166677 500__ $$a#LA:E020#2021 Jun;85(6):3140-3153
000166677 520__ $$aTo mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization.Data sets consisting of B0 , B 1 + maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion.All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types.UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
000166677 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000166677 588__ $$aDataset connected to CrossRef, PubMed,
000166677 650_7 $$2Other$$a7 T
000166677 650_7 $$2Other$$aSPINS
000166677 650_7 $$2Other$$akT points
000166677 650_7 $$2Other$$aparallel transmission (pTx)
000166677 650_7 $$2Other$$aultra-high-field MRI
000166677 650_7 $$2Other$$auniversal pulses
000166677 7001_ $$00000-0001-7342-3715$$aLiebig, Patrick$$b1
000166677 7001_ $$aGumbrecht, Rene$$b2
000166677 7001_ $$aRitter, Dieter$$b3
000166677 7001_ $$aSchmitter, Sebastian$$b4
000166677 7001_ $$aMaier, Andreas$$b5
000166677 7001_ $$aSchmidt, Manuel$$b6
000166677 7001_ $$aUder, Michael$$b7
000166677 7001_ $$aDoerfler, Arnd$$b8
000166677 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b9$$eLast author$$udkfz
000166677 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28643$$gp. mrm.28643$$n6$$p3140-3153$$tMagnetic resonance in medicine$$v85$$x1522-2594$$y2021
000166677 909CO $$ooai:inrepo02.dkfz.de:166677$$pVDB
000166677 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000166677 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000166677 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000166677 9141_ $$y2021
000166677 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000166677 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-05$$wger
000166677 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2018$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000166677 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000166677 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000166677 980__ $$ajournal
000166677 980__ $$aVDB
000166677 980__ $$aI:(DE-He78)E020-20160331
000166677 980__ $$aUNRESTRICTED