000167140 001__ 167140
000167140 005__ 20240229133531.0
000167140 0247_ $$2doi$$a10.1186/s13053-021-00167-0
000167140 0247_ $$2pmid$$apmid:33468175
000167140 0247_ $$2ISSN$$a1731-2302
000167140 0247_ $$2ISSN$$a1897-4287
000167140 0247_ $$2altmetric$$aaltmetric:98075064
000167140 037__ $$aDKFZ-2021-00161
000167140 041__ $$aeng
000167140 082__ $$a610
000167140 1001_ $$0P:(DE-He78)da09d83faa85c143d15611698f7b1eac$$aKumar, Abhishek$$b0$$eFirst author
000167140 245__ $$aA rare large duplication of MLH1 identified in Lynch syndrome.
000167140 260__ $$aHeidelberg$$bSpringer$$c2021
000167140 3367_ $$2DRIVER$$aarticle
000167140 3367_ $$2DataCite$$aOutput Types/Journal article
000167140 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611238528_828
000167140 3367_ $$2BibTeX$$aARTICLE
000167140 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167140 3367_ $$00$$2EndNote$$aJournal Article
000167140 500__ $$a#EA:C050#LA:B062#
000167140 520__ $$aThe most frequently identified strong cancer predisposition mutations for colorectal cancer (CRC) are those in the mismatch repair (MMR) genes in Lynch syndrome. Laboratory diagnostics include testing tumors for immunohistochemical staining (IHC) of the Lynch syndrome-associated DNA MMR proteins and/or for microsatellite instability (MSI) followed by sequencing or other techniques, such as denaturing high performance liquid chromatography (DHPLC), to identify the mutation.In an ongoing project focusing on finding Mendelian cancer syndromes we applied whole-exome/whole-genome sequencing (WES/WGS) to 19 CRC families.Three families were identified with a pathogenic/likely pathogenic germline variant in a MMR gene that had previously tested negative in DHPLC gene variant screening. All families had a history of CRC in several family members across multiple generations. Tumor analysis showed loss of the MMR protein IHC staining corresponding to the mutated genes, as well as MSI. In family A, a structural variant, a duplication of exons 4 to 13, was identified in MLH1. The duplication was predicted to lead to a frameshift at amino acid 520 and a premature stop codon at amino acid 539. In family B, a 1 base pair deletion was found in MLH1, resulting in a frameshift and a stop codon at amino acid 491. In family C, we identified a splice site variant in MSH2, which was predicted to lead loss of a splice donor site.We identified altogether three pathogenic/likely pathogenic variants in the MMR genes in three of the 19 sequenced families. The MLH1 variants, a duplication of exons 4 to 13 and a frameshift variant, were novel, based on the InSiGHT and ClinVar databases; the MSH2 splice site variant was reported by a single submitter in ClinVar. As a variant class, duplications have rarely been reported in the MMR gene literature, particularly those covering several exons.
000167140 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000167140 588__ $$aDataset connected to CrossRef, PubMed,
000167140 650_7 $$2Other$$aGenetic predisposition
000167140 650_7 $$2Other$$aLynch syndrome
000167140 650_7 $$2Other$$aMismatch repair genes
000167140 650_7 $$2Other$$aWhole-genome sequencing
000167140 7001_ $$aParamasivam, Nagarajan$$b1
000167140 7001_ $$0P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc$$aBandapalli, Obul Reddy$$b2$$udkfz
000167140 7001_ $$0P:(DE-He78)f2a782242acf94a3114d75c45dc75b37$$aSchlesner, Matthias$$b3$$udkfz
000167140 7001_ $$aChen, Tianhui$$b4
000167140 7001_ $$aSijmons, Rolf$$b5
000167140 7001_ $$aDymerska, Dagmara$$b6
000167140 7001_ $$aGolebiewska, Katarzyna$$b7
000167140 7001_ $$aKuswik, Magdalena$$b8
000167140 7001_ $$aLubinski, Jan$$b9
000167140 7001_ $$0P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aHemminki, Kari$$b10$$udkfz
000167140 7001_ $$0P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696$$aFörsti, Asta$$b11$$eLast author$$udkfz
000167140 773__ $$0PERI:(DE-600)2233352-6$$a10.1186/s13053-021-00167-0$$gVol. 19, no. 1, p. 10$$n1$$p10$$tHereditary cancer in clinical practice$$v19$$x1897-4287$$y2021
000167140 909CO $$ooai:inrepo02.dkfz.de:167140$$pVDB
000167140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)da09d83faa85c143d15611698f7b1eac$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000167140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000167140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f2a782242acf94a3114d75c45dc75b37$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000167140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19b0ec1cea271419d9fa8680e6ed6865$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000167140 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f26164c08f2f14abcf31e52e13ee3696$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000167140 9130_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000167140 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000167140 9141_ $$y2021
000167140 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2020-08-22
000167140 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHERED CANCER CLIN PR : 2018$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-22
000167140 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-22
000167140 9201_ $$0I:(DE-He78)C050-20160331$$kC050$$lMolekular-Genetische Epidemiologie$$x0
000167140 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x1
000167140 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x2
000167140 9201_ $$0I:(DE-He78)B240-20160331$$kB240$$lB240 Bioinformatik und Omics Data Analytics$$x3
000167140 980__ $$ajournal
000167140 980__ $$aVDB
000167140 980__ $$aI:(DE-He78)C050-20160331
000167140 980__ $$aI:(DE-He78)B062-20160331
000167140 980__ $$aI:(DE-He78)HD01-20160331
000167140 980__ $$aI:(DE-He78)B240-20160331
000167140 980__ $$aUNRESTRICTED