000167180 001__ 167180
000167180 005__ 20240229133532.0
000167180 0247_ $$2doi$$a10.1126/scitranslmed.aba7401
000167180 0247_ $$2pmid$$apmid:33472956
000167180 0247_ $$2ISSN$$a1946-6234
000167180 0247_ $$2ISSN$$a1946-6242
000167180 0247_ $$2altmetric$$aaltmetric:98614488
000167180 037__ $$aDKFZ-2021-00171
000167180 041__ $$aeng
000167180 082__ $$a500
000167180 1001_ $$00000-0003-3554-2769$$aEndersby, Raelene$$b0
000167180 245__ $$aSmall-molecule screen reveals synergy of cell cycle checkpoint kinase inhibitors with DNA-damaging chemotherapies in medulloblastoma.
000167180 260__ $$aWashington, DC$$bAAAS$$c2021
000167180 3367_ $$2DRIVER$$aarticle
000167180 3367_ $$2DataCite$$aOutput Types/Journal article
000167180 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1611584057_13987
000167180 3367_ $$2BibTeX$$aARTICLE
000167180 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167180 3367_ $$00$$2EndNote$$aJournal Article
000167180 520__ $$aMedulloblastoma (MB) consists of four core molecular subgroups with distinct clinical features and prognoses. Treatment consists of surgery, followed by radiotherapy and cytotoxic chemotherapy. Despite this intensive approach, outcome remains dismal for patients with certain subtypes of MB, namely, MYC-amplified Group 3 and TP53-mutated SHH. Using high-throughput assays, six human MB cell lines were screened against a library of 3208 unique compounds. We identified 45 effective compounds from the screen and found that cell cycle checkpoint kinase (CHK1/2) inhibition synergistically enhanced the cytotoxic activity of clinically used chemotherapeutics cyclophosphamide, cisplatin, and gemcitabine. To identify the best-in-class inhibitor, multiple CHK1/2 inhibitors were assessed in mice bearing intracranial MB. When combined with DNA-damaging chemotherapeutics, CHK1/2 inhibition reduced tumor burden and increased survival of animals with high-risk MB, across multiple different models. In total, we tested 14 different models, representing distinct MB subgroups, and data were validated in three independent laboratories. Pharmacodynamics studies confirmed central nervous system penetration. In mice, combination treatment significantly increased DNA damage and apoptosis compared to chemotherapy alone, and studies with cultured cells showed that CHK inhibition disrupted chemotherapy-induced cell cycle arrest. Our findings indicated CHK1/2 inhibition, specifically with LY2606368 (prexasertib), has strong chemosensitizing activity in MB that warrants further clinical investigation. Moreover, these data demonstrated that we developed a robust and collaborative preclinical assessment platform that can be used to identify potentially effective new therapies for clinical evaluation for pediatric MB.
000167180 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000167180 588__ $$aDataset connected to CrossRef, PubMed,
000167180 7001_ $$aWhitehouse, Jacqueline$$b1
000167180 7001_ $$aPribnow, Allison$$b2
000167180 7001_ $$00000-0002-6348-4087$$aKuchibhotla, Mani$$b3
000167180 7001_ $$00000-0002-8431-5725$$aHii, Hilary$$b4
000167180 7001_ $$00000-0002-8061-4170$$aCarline, Brooke$$b5
000167180 7001_ $$aGande, Suresh$$b6
000167180 7001_ $$00000-0002-0039-8675$$aStripay, Jennifer$$b7
000167180 7001_ $$aAncliffe, Mathew$$b8
000167180 7001_ $$00000-0003-4332-6572$$aHowlett, Meegan$$b9
000167180 7001_ $$aSchoep, Tobias$$b10
000167180 7001_ $$aGeorge, Courtney$$b11
000167180 7001_ $$aAndradas, Clara$$b12
000167180 7001_ $$aDyer, Patrick$$b13
000167180 7001_ $$00000-0002-7939-2072$$aSchluck, Marjolein$$b14
000167180 7001_ $$aPatterson, Brett$$b15
000167180 7001_ $$aTacheva-Gigorova, Silvia K$$b16
000167180 7001_ $$00000-0003-1139-3682$$aCooper, Matthew N$$b17
000167180 7001_ $$00000-0001-7441-9486$$aRobinson, Giles$$b18
000167180 7001_ $$00000-0002-1546-9720$$aStewart, Clinton$$b19
000167180 7001_ $$0P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aPfister, Stefan M$$b20$$udkfz
000167180 7001_ $$0P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aKool, Marcel$$b21$$udkfz
000167180 7001_ $$0P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f$$aMilde, Till$$b22$$udkfz
000167180 7001_ $$00000-0001-5019-0699$$aGajjar, Amar$$b23
000167180 7001_ $$00000-0002-8874-4543$$aJohns, Terrance$$b24
000167180 7001_ $$00000-0002-7463-8352$$aWechsler-Reya, Robert J$$b25
000167180 7001_ $$00000-0002-1740-8139$$aRoussel, Martine F$$b26
000167180 7001_ $$00000-0002-1082-6776$$aGottardo, Nicholas G$$b27
000167180 773__ $$0PERI:(DE-600)2518839-2$$a10.1126/scitranslmed.aba7401$$gVol. 13, no. 577, p. eaba7401 -$$n577$$peaba7401 -$$tScience translational medicine$$v13$$x1946-6242$$y2021
000167180 909CO $$ooai:inrepo02.dkfz.de:167180$$pVDB
000167180 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9$$aDeutsches Krebsforschungszentrum$$b20$$kDKFZ
000167180 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8$$aDeutsches Krebsforschungszentrum$$b21$$kDKFZ
000167180 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0be2f86573954f87e97f8a4dbb05cb0f$$aDeutsches Krebsforschungszentrum$$b22$$kDKFZ
000167180 9130_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000167180 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000167180 9141_ $$y2021
000167180 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-18
000167180 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-18
000167180 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-18
000167180 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-18
000167180 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-08-18
000167180 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-08-18
000167180 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-18
000167180 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-18
000167180 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI TRANSL MED : 2018$$d2020-08-18
000167180 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bSCI TRANSL MED : 2018$$d2020-08-18
000167180 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x0
000167180 980__ $$ajournal
000167180 980__ $$aVDB
000167180 980__ $$aI:(DE-He78)B062-20160331
000167180 980__ $$aUNRESTRICTED