001     167183
005     20240229133532.0
024 7 _ |a 10.1016/j.ejrad.2021.109538
|2 doi
024 7 _ |a pmid:33482592
|2 pmid
024 7 _ |a altmetric:98834324
|2 altmetric
037 _ _ |a DKFZ-2021-00174
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |a Wang, Xianfeng
|0 P:(DE-He78)aec14a1077ed145f9ebe9de1d50905b0
|b 0
|e First author
|u dkfz
245 _ _ |a Comparison of single-scanner single-protocol quantitative ADC measurements to ADC ratios to detect clinically significant prostate cancer.
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1692790952_30742
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E010#LA:E010#
520 _ _ |a Mean ADC has high predictive value for the presence of clinically significant prostate cancer (sPC). Measurement variability is introduced by different scanners, protocols, intra-and inter-patient variation. Internal calibration by ADC ratios can address such fluctuations however can potentially lower the biological value of quantitative ADC determination by being sensitive to deviations in reference tissue signal.To better understand the predictive value of quantitative ADC measurements in comparison to internal reference ratios when measured in a single scanner, single protocol setup.284 consecutive patients who underwent 3 T MRI on a single scanner followed by MRI-transrectal ultrasound fusion biopsy were included. A board-certified radiologist retrospectively reviewed all MRIs blinded to clinical information and placed regions of interest (ROI) on all focal lesions and the following reference regions: normal-appearing peripheral zone (PZNL) and transition zone (TZNL), the urinary bladder (BLA), and right and left internal obturator muscle (RIOM, LIOM). ROI-based mean ADC and ADC ratios to the reference regions were compared regarding their ability to predict the aggressiveness of prostate cancer. Spearman's rank correlation coefficient was used to estimate the correlation between ADC parameters, Gleason score (GS) and ADC ratios. The primary endpoint was presence of sPC, defined as a GS ≥ 3 + 4. Univariable and multivariable logistic regression models were constructed to predict sPC. Receiver operating characteristics curves (ROC) were used for visualization; DeLong test was used to evaluate the differences of the area under the curve (AUC). Bias-corrected AUC values and corresponding 95 %-CI were calculated using bootstrapping with 100 bootstrap samples.After exclusion of patients who received prior treatment, 259 patients were included in the final cohort of which 220 harbored 351 MR lesions. Mean ADC and ADC ratios demonstrated a negative correlation with the GS. Mean ADC had the strongest correlation with ρ of -0.34, followed by ADCratioPZNL (ρ=-0.32). All ADC parameters except ADCratioLIOM (p = 0.07) were associated with sPC p<0.05). Mean ADC and ADCratioPZNL had the highest ROC AUC of all parameters (0.68). Multivariable models with mean ADC improve predictive performance.A highly standardized single-scanner mean ADC measurement could not be improved upon using any of the single ADC ratio parameters or combinations of these parameters in predicting the aggressiveness of prostate cancer.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a Apparent diffusion coefficient
|2 Other
650 _ 7 |a Gleason score
|2 Other
650 _ 7 |a Multiparametric MRI
|2 Other
650 _ 7 |a Prostate cancer
|2 Other
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 1
|u dkfz
700 1 _ |a Radtke, Jan Philipp
|0 P:(DE-He78)79897f8897ff77676549d9895258a0f2
|b 2
|u dkfz
700 1 _ |a Görtz, Magdalena
|b 3
700 1 _ |a Schütz, Viktoria
|b 4
700 1 _ |a Kuder, Tristan Anselm
|0 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
|b 5
|u dkfz
700 1 _ |a Gnirs, Regula
|0 P:(DE-He78)77bc493068847c689d894d2eda891c0c
|b 6
|u dkfz
700 1 _ |a Schwab, Constantin
|b 7
700 1 _ |a Stenzinger, Albrecht
|b 8
700 1 _ |a Hohenfellner, Markus
|b 9
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 10
|u dkfz
700 1 _ |a Bonekamp, David
|0 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
|b 11
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.ejrad.2021.109538
|g Vol. 136, p. 109538 -
|0 PERI:(DE-600)2005350-2
|p 109538
|t European journal of radiology
|v 136
|y 2021
|x 0720-048X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:167183
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)aec14a1077ed145f9ebe9de1d50905b0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)79897f8897ff77676549d9895258a0f2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)77bc493068847c689d894d2eda891c0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)ea098e4d78abeb63afaf8c25ec6d6d93
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-315
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Imaging and radiooncology
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-29
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2020-09-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-29
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J RADIOL : 2018
|d 2020-09-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-29
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21