% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Koelsche:167188,
      author       = {C. Koelsche$^*$ and D. Schrimpf$^*$ and D. Stichel$^*$ and
                      M. Sill$^*$ and F. Sahm$^*$ and D. E. Reuss$^*$ and M.
                      Blattner$^*$ and B. Worst$^*$ and C. E. Heilig$^*$ and K.
                      Beck$^*$ and P. Horak$^*$ and S. Kreutzfeldt$^*$ and E.
                      Paff$^*$ and S. Stark$^*$ and P. Johann$^*$ and F. Selt$^*$
                      and J. Ecker$^*$ and D. Sturm$^*$ and K. W. Pajtler$^*$ and
                      A. Reinhardt$^*$ and A. K. Wefers$^*$ and P. Sievers$^*$ and
                      A. Ebrahimi$^*$ and A. Suwala$^*$ and F.
                      Fernández-Klett$^*$ and B. Casalini$^*$ and A.
                      Korshunov$^*$ and V. Hovestadt and F. K. F. Kommoss and M.
                      Kriegsmann and M. Schick$^*$ and M. Bewerunge-Hudler$^*$ and
                      T. Milde$^*$ and O. Witt$^*$ and A. E. Kulozik and M.
                      Kool$^*$ and L. Romero-Pérez and T. G. P. Grünewald and T.
                      Kirchner and W. Wick$^*$ and M. Platten$^*$ and A. Unterberg
                      and M. Uhl and A. Abdollahi$^*$ and J. Debus$^*$ and B.
                      Lehner and C. Thomas and M. Hasselblatt and W. Paulus and C.
                      Hartmann and O. Staszewski and M. Prinz and J. Hench and S.
                      Frank and Y. M. H. Versleijen-Jonkers and M. E. Weidema and
                      T. Mentzel and K. Griewank and E. de Álava and J. D.
                      Martín and M. A. I. Gastearena and K. T. Chang and S. Y. Y.
                      Low and A. Cuevas-Bourdier and M. Mittelbronn and M. Mynarek
                      and S. Rutkowski and U. Schüller and V. F. Mautner and J.
                      Schittenhelm and J. Serrano and M. Snuderl and R. Büttner
                      and T. Klingebiel and R. Buslei and M. Gessler and P.
                      Wesseling and W. N. M. Dinjens and S. Brandner and Z.
                      Jaunmuktane and I. Lyskjær and P. Schirmacher and A.
                      Stenzinger and B. Brors$^*$ and H. Glimm$^*$ and C.
                      Heining$^*$ and O. M. Tirado and M. Sáinz-Jaspeado and J.
                      Mora and J. Alonso and X. G. Del Muro and S. Moran and M.
                      Esteller and J. K. Benhamida and M. Ladanyi and E.
                      Wardelmann and C. Antonescu and A. Flanagan and U.
                      Dirksen$^*$ and P. Hohenberger and D. Baumhoer and W.
                      Hartmann and C. Vokuhl and U. Flucke and I. Petersen and G.
                      Mechtersheimer and D. Capper and D. T. W. Jones$^*$ and S.
                      Fröhling$^*$ and S. M. Pfister$^*$ and A. von Deimling$^*$},
      title        = {{S}arcoma classification by {DNA} methylation profiling.},
      journal      = {Nature Communications},
      volume       = {12},
      number       = {1},
      issn         = {2041-1723},
      address      = {[London]},
      publisher    = {Nature Publishing Group UK},
      reportid     = {DKFZ-2021-00179},
      pages        = {498},
      year         = {2021},
      note         = {#EA:B300#LA:B300#},
      abstract     = {Sarcomas are malignant soft tissue and bone tumours
                      affecting adults, adolescents and children. They represent a
                      morphologically heterogeneous class of tumours and some
                      entities lack defining histopathological features.
                      Therefore, the diagnosis of sarcomas is burdened with a high
                      inter-observer variability and misclassification rate. Here,
                      we demonstrate classification of soft tissue and bone
                      tumours using a machine learning classifier algorithm based
                      on array-generated DNA methylation data. This sarcoma
                      classifier is trained using a dataset of 1077 methylation
                      profiles from comprehensively pre-characterized cases
                      comprising 62 tumour methylation classes constituting a
                      broad range of soft tissue and bone sarcoma subtypes across
                      the entire age spectrum. The performance is validated in a
                      cohort of 428 sarcomatous tumours, of which 322 cases were
                      classified by the sarcoma classifier. Our results
                      demonstrate the potential of the DNA methylation-based
                      sarcoma classification for research and future diagnostic
                      applications.},
      cin          = {B300 / HD01 / B062 / B360 / B340 / B310 / W110 / D170 /
                      E050 / E210 / B330 / DD01 / ED01 / B320},
      ddc          = {500},
      cid          = {I:(DE-He78)B300-20160331 / I:(DE-He78)HD01-20160331 /
                      I:(DE-He78)B062-20160331 / I:(DE-He78)B360-20160331 /
                      I:(DE-He78)B340-20160331 / I:(DE-He78)B310-20160331 /
                      I:(DE-He78)W110-20160331 / I:(DE-He78)D170-20160331 /
                      I:(DE-He78)E050-20160331 / I:(DE-He78)E210-20160331 /
                      I:(DE-He78)B330-20160331 / I:(DE-He78)DD01-20160331 /
                      I:(DE-He78)ED01-20160331 / I:(DE-He78)B320-20160331},
      pnm          = {312 - Funktionelle und strukturelle Genomforschung
                      (POF4-312)},
      pid          = {G:(DE-HGF)POF4-312},
      typ          = {PUB:(DE-HGF)16},
      pubmed       = {pmid:33479225},
      doi          = {10.1038/s41467-020-20603-4},
      url          = {https://inrepo02.dkfz.de/record/167188},
}