000167284 001__ 167284
000167284 005__ 20240229133535.0
000167284 0247_ $$2doi$$a10.1093/bioinformatics/btab043
000167284 0247_ $$2pmid$$apmid:33515236
000167284 0247_ $$2ISSN$$a0266-7061
000167284 0247_ $$2ISSN$$a1367-4803
000167284 0247_ $$2ISSN$$a1367-4811
000167284 0247_ $$2ISSN$$a1460-2059
000167284 0247_ $$2altmetric$$aaltmetric:99192667
000167284 037__ $$aDKFZ-2021-00239
000167284 041__ $$aeng
000167284 082__ $$a570
000167284 1001_ $$aKappenberg, Franziska$$b0
000167284 245__ $$aComparison Of Observation-Based And Model-Based Identification Of Alert Concentrations From Concentration-Expression Data.
000167284 260__ $$aOxford$$bOxford Univ. Press$$c2021
000167284 3367_ $$2DRIVER$$aarticle
000167284 3367_ $$2DataCite$$aOutput Types/Journal article
000167284 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1634294943_29198
000167284 3367_ $$2BibTeX$$aARTICLE
000167284 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167284 3367_ $$00$$2EndNote$$aJournal Article
000167284 500__ $$a2021 Jan 30;37(14):1990-1996
000167284 520__ $$aAn important goal of concentration-response studies in toxicology is to determine an 'alert' concentration where a critical level of the response variable is exceeded. In a classical observation-based approach, only measured concentrations are considered as potential alert concentrations. Alternatively, a parametric curve is fitted to the data that describes the relationship between concentration and response. For a prespecified effect level, both an absolute estimate of the alert concentration and an estimate of the lowest concentration where the effect level is exceeded significantly are of interest.In a simulation study for gene expression data, we compared the observation-based and the model-based approach for both absolute and significant exceedance of the prespecified effect level. Results show that, compared to the observation-based approach, the model-based approach overestimates the true alert concentration less often and more frequently leads to a valid estimate, especially for genes with large variance.The code used for the simulation studies is available via the GitHub repository: https://github.com/FKappenberg/Paper-IdentificationAlertConcentrations.Supplementary data are available at Bioinformatics online.
000167284 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000167284 588__ $$aDataset connected to CrossRef, PubMed,
000167284 7001_ $$aGrinberg, Marianna$$b1
000167284 7001_ $$aJiang, Xiaoqi$$b2
000167284 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b3$$udkfz
000167284 7001_ $$aHengstler, Jan G$$b4
000167284 7001_ $$aRahnenführer, Jörg$$b5
000167284 773__ $$0PERI:(DE-600)1468345-3$$a10.1093/bioinformatics/btab043$$gp. btab043$$n14$$p1990-1996$$tBioinformatics$$v37$$x1460-2059$$y2021
000167284 909CO $$ooai:inrepo02.dkfz.de:167284$$pVDB
000167284 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000167284 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000167284 9130_ $$0G:(DE-HGF)POF3-313$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vCancer risk factors and prevention$$x0
000167284 9141_ $$y2021
000167284 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-11$$wger
000167284 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOINFORMATICS : 2018$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-11
000167284 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-11
000167284 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000167284 980__ $$ajournal
000167284 980__ $$aVDB
000167284 980__ $$aI:(DE-He78)C060-20160331
000167284 980__ $$aUNRESTRICTED