001     167284
005     20240229133535.0
024 7 _ |a 10.1093/bioinformatics/btab043
|2 doi
024 7 _ |a pmid:33515236
|2 pmid
024 7 _ |a 0266-7061
|2 ISSN
024 7 _ |a 1367-4803
|2 ISSN
024 7 _ |a 1367-4811
|2 ISSN
024 7 _ |a 1460-2059
|2 ISSN
024 7 _ |a altmetric:99192667
|2 altmetric
037 _ _ |a DKFZ-2021-00239
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Kappenberg, Franziska
|b 0
245 _ _ |a Comparison Of Observation-Based And Model-Based Identification Of Alert Concentrations From Concentration-Expression Data.
260 _ _ |a Oxford
|c 2021
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1634294943_29198
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Jan 30;37(14):1990-1996
520 _ _ |a An important goal of concentration-response studies in toxicology is to determine an 'alert' concentration where a critical level of the response variable is exceeded. In a classical observation-based approach, only measured concentrations are considered as potential alert concentrations. Alternatively, a parametric curve is fitted to the data that describes the relationship between concentration and response. For a prespecified effect level, both an absolute estimate of the alert concentration and an estimate of the lowest concentration where the effect level is exceeded significantly are of interest.In a simulation study for gene expression data, we compared the observation-based and the model-based approach for both absolute and significant exceedance of the prespecified effect level. Results show that, compared to the observation-based approach, the model-based approach overestimates the true alert concentration less often and more frequently leads to a valid estimate, especially for genes with large variance.The code used for the simulation studies is available via the GitHub repository: https://github.com/FKappenberg/Paper-IdentificationAlertConcentrations.Supplementary data are available at Bioinformatics online.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed,
700 1 _ |a Grinberg, Marianna
|b 1
700 1 _ |a Jiang, Xiaoqi
|b 2
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 3
|u dkfz
700 1 _ |a Hengstler, Jan G
|b 4
700 1 _ |a Rahnenführer, Jörg
|b 5
773 _ _ |a 10.1093/bioinformatics/btab043
|g p. btab043
|0 PERI:(DE-600)1468345-3
|n 14
|p 1990-1996
|t Bioinformatics
|v 37
|y 2021
|x 1460-2059
909 C O |p VDB
|o oai:inrepo02.dkfz.de:167284
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-09-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOINFORMATICS : 2018
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-09-11
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-11
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21