001     167344
005     20240229133537.0
024 7 _ |a 10.3390/ijms22031189
|2 doi
024 7 _ |a pmid:33530402
|2 pmid
024 7 _ |a 1422-0067
|2 ISSN
024 7 _ |a 1661-6596
|2 ISSN
024 7 _ |a altmetric:99400664
|2 altmetric
037 _ _ |a DKFZ-2021-00291
041 _ _ |a eng
082 _ _ |a 540
100 1 _ |a Bhardwaj, Megha
|0 P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada
|b 0
|e First author
|u dkfz
245 _ _ |a Comparison of Proteomic Technologies for Blood-Based Detection of Colorectal Cancer.
260 _ _ |a Basel
|c 2021
|b Molecular Diversity Preservation International
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1612864601_23471
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070#
520 _ _ |a Blood-based protein biomarkers are increasingly being explored as supplementary or efficient alternatives for population-based screening of colorectal cancer (CRC). The objective of the current study was to compare the diagnostic potential of proteins measured with different proteomic technologies. The concentrations of protein biomarkers were measured using proximity extension assays (PEAs), liquid chromatography/multiple reaction monitoring-mass spectrometry (LC/MRM-MS) and quantibody microarrays (QMAs) in plasma samples of 56 CRC patients and 99 participants free of neoplasms. In another approach, proteins were measured in serum samples of 30 CRC cases and 30 participants free of neoplasm using immunome full-length functional protein arrays (IpAs). From all the measurements, 9, 6, 35 and 14 protein biomarkers overlapped for comparative evaluation of (a) PEA and LC/MRM-MS, (b) PEA and QMA, (c) PEA and IpA, and (d) LC/MRM-MS and IpA measurements, respectively. Correlation analysis was performed, along with calculation of the area under the curve (AUC) for assessing the diagnostic potential of each biomarker. DeLong's test was performed to assess the differences in AUC. Evaluation of the nine biomarkers measured with PEA and LC/MRM-MS displayed correlation coefficients >+0.6, similar AUCs and DeLong's p-values indicating no differences in AUCs for biomarkers like insulin-like growth factor binding protein 2 (IGFBP2), matrix metalloproteinase 9 (MMP9) and serum paraoxonase lactonase 3 (PON3). Comparing six proteins measured with PEA and QMA showed good correlation and similar diagnostic performance for only one protein, growth differentiation factor 15 (GDF15). The comparison of 35 proteins measured with IpA and PEA and 14 proteins analyzed with IpA and LC/MRM-MS revealed poor concordance and comparatively better AUCs when measured with PEA and LC/MRM-MS. The comparison of different proteomic technologies suggests the superior performance of novel technologies like PEA and LC/MRM-MS over the assessed array-based technologies in blood-protein-based early detection of CRC.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, PubMed,
650 _ 7 |a LC/MRM-MS
|2 Other
650 _ 7 |a biomarkers
|2 Other
650 _ 7 |a colorectal cancer
|2 Other
650 _ 7 |a diagnosis
|2 Other
650 _ 7 |a microarray
|2 Other
650 _ 7 |a plasma proteins
|2 Other
650 _ 7 |a proximity extension assays
|2 Other
700 1 _ |a Terzer, Tobias
|0 P:(DE-He78)9c4af0f5ceb3a2072b3736274eadf20e
|b 1
|u dkfz
700 1 _ |a Schrotz-King, Petra
|0 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
|b 2
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.3390/ijms22031189
|g Vol. 22, no. 3, p. 1189 -
|0 PERI:(DE-600)2019364-6
|n 3
|p 1189
|t International journal of molecular sciences
|v 22
|y 2021
|x 1422-0067
909 C O |o oai:inrepo02.dkfz.de:167344
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)9c4af0f5ceb3a2072b3736274eadf20e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)01ef71f71b01a3ec3b698653fd43fe86
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 0 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-313
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Cancer risk factors and prevention
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-09-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-09-09
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-09-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-09-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-09-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J MOL SCI : 2018
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-09-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-09-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-09-09
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-09
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-09-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-09-09
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21