000167465 001__ 167465
000167465 005__ 20240229123236.0
000167465 0247_ $$2doi$$a10.1016/bs.mcb.2019.11.012
000167465 0247_ $$2pmid$$apmid:32222225
000167465 0247_ $$2doi$$adoi: 10.1016/bs.mcb.2019.11.012
000167465 037__ $$aDKFZ-2021-00368
000167465 041__ $$aeng
000167465 082__ $$a570
000167465 1001_ $$aPavez Loriè, Elizabeth$$b0
000167465 245__ $$aMethods in cell biology: Cell-derived matrices.
000167465 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000167465 3367_ $$2DRIVER$$aarticle
000167465 3367_ $$2DataCite$$aOutput Types/Journal article
000167465 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678973132_21014
000167465 3367_ $$2BibTeX$$aARTICLE
000167465 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167465 3367_ $$00$$2EndNote$$aJournal Article
000167465 500__ $$aVolume 156, 2020, Pages 309-332#LA:A110#
000167465 520__ $$aThree-dimensional (3D) in vitro skin and skin cancer models have become an invaluable tool in skin research. They go back to 1979, when Bell and colleagues reported on the establishment of a fibroblast-dependent collagen tissue (Bell, Ivarsson, & Merrill, 1979). On top of such tissue a stratified and differentiated epidermis could be established (Bell, Merrill, & Solomon, 1979). Hydrogel-based dermal equivalents have been generated ever since and upon co-culture with normal human skin keratinocytes, these constructs were then termed skin equivalents. Due to a number of deficiencies, the most important one being their restricted survival time, new developments helped to circumvent premature fibroblast activation and tissue destruction. By avoiding collagen for the dermal equivalent (DE), we proposed, a scaffold-based DE, allowing fibroblasts to reorganize the primary fibrin solution into an 'authentic' dermal matrix (Boehnke et al., 2007; Stark et al., 2004, 2006). With this, our goal of a long-term skin equivalent-successful cultivation for several months-was achieved. Nevertheless, also this model presented limitations. One being its opaqueness made it difficult to image the intact tissue. Another draw-back was that tumor cells upon invasion used the scaffold as a guardrail leaving behind an unspecific invasion pattern. All this could be avoided by an approach, the fibroblast-derived matrix-based model, based on the work by Ahlfors and Billiar (2007) We here provide a protocol for this type of model, thereby providing the basis for future work in the field of skin research.
000167465 536__ $$0G:(DE-HGF)POF3-311$$a311 - Signalling pathways, cell and tumor biology (POF3-311)$$cPOF3-311$$fPOF III$$x0
000167465 588__ $$aDataset connected to CrossRef Book Series, PubMed,
000167465 650_7 $$2Other$$a3D models
000167465 650_7 $$2Other$$aCell-derived matrix
000167465 650_7 $$2Other$$aDermal equivalent
000167465 650_7 $$2Other$$aECM
000167465 650_7 $$2Other$$aFibroblast
000167465 650_7 $$2Other$$aHuman model
000167465 650_7 $$2Other$$aKeratinocyte
000167465 650_7 $$2Other$$aLong-term
000167465 650_7 $$2Other$$aModeling approach
000167465 650_7 $$2Other$$aOrgan
000167465 650_7 $$2Other$$aProtocol
000167465 650_7 $$2Other$$aSelf-assembled
000167465 650_7 $$2Other$$aSkin equivalents
000167465 650_7 $$2Other$$aTissue
000167465 650_2 $$2MeSH$$aCells, Cultured
000167465 650_2 $$2MeSH$$aCytological Techniques: methods
000167465 650_2 $$2MeSH$$aExtracellular Matrix: metabolism
000167465 650_2 $$2MeSH$$aFibroblasts: cytology
000167465 650_2 $$2MeSH$$aFibroblasts: metabolism
000167465 650_2 $$2MeSH$$aHumans
000167465 650_2 $$2MeSH$$aKeratinocytes: cytology
000167465 650_2 $$2MeSH$$aKeratinocytes: metabolism
000167465 7001_ $$0P:(DE-He78)c1895aa471c7ac9c7173045464b69b31$$aBoukamp, Petra$$b1$$eLast author$$udkfz
000167465 773__ $$0PERI:(DE-600)2257731-2$$adoi: 10.1016/bs.mcb.2019.11.012$$p309-332$$tMethods in cell biology$$v156$$x0091-679X$$y2020
000167465 909CO $$ooai:inrepo02.dkfz.de:167465$$pVDB
000167465 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETHOD CELL BIOL : 2018$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000167465 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-16
000167465 9141_ $$y2020
000167465 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c1895aa471c7ac9c7173045464b69b31$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000167465 9131_ $$0G:(DE-HGF)POF3-311$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vSignalling pathways, cell and tumor biology$$x0
000167465 9132_ $$0G:(DE-HGF)POF4-319H$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vAddenda$$x0
000167465 9202_ $$0I:(DE-He78)A110-20160331$$kA110$$lGenetik der Hautkarcinogenese$$x0
000167465 9201_ $$0I:(DE-He78)A110-20160331$$kA110$$lGenetik der Hautkarcinogenese$$x0
000167465 980__ $$ajournal
000167465 980__ $$aVDB
000167465 980__ $$aI:(DE-He78)A110-20160331
000167465 980__ $$aUNRESTRICTED