001     167465
005     20240229123236.0
024 7 _ |2 doi
|a 10.1016/bs.mcb.2019.11.012
024 7 _ |2 pmid
|a pmid:32222225
024 7 _ |2 doi
|a doi: 10.1016/bs.mcb.2019.11.012
037 _ _ |a DKFZ-2021-00368
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Pavez Loriè, Elizabeth
|b 0
245 _ _ |a Methods in cell biology: Cell-derived matrices.
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2020
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1678973132_21014
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a Volume 156, 2020, Pages 309-332#LA:A110#
520 _ _ |a Three-dimensional (3D) in vitro skin and skin cancer models have become an invaluable tool in skin research. They go back to 1979, when Bell and colleagues reported on the establishment of a fibroblast-dependent collagen tissue (Bell, Ivarsson, & Merrill, 1979). On top of such tissue a stratified and differentiated epidermis could be established (Bell, Merrill, & Solomon, 1979). Hydrogel-based dermal equivalents have been generated ever since and upon co-culture with normal human skin keratinocytes, these constructs were then termed skin equivalents. Due to a number of deficiencies, the most important one being their restricted survival time, new developments helped to circumvent premature fibroblast activation and tissue destruction. By avoiding collagen for the dermal equivalent (DE), we proposed, a scaffold-based DE, allowing fibroblasts to reorganize the primary fibrin solution into an 'authentic' dermal matrix (Boehnke et al., 2007; Stark et al., 2004, 2006). With this, our goal of a long-term skin equivalent-successful cultivation for several months-was achieved. Nevertheless, also this model presented limitations. One being its opaqueness made it difficult to image the intact tissue. Another draw-back was that tumor cells upon invasion used the scaffold as a guardrail leaving behind an unspecific invasion pattern. All this could be avoided by an approach, the fibroblast-derived matrix-based model, based on the work by Ahlfors and Billiar (2007) We here provide a protocol for this type of model, thereby providing the basis for future work in the field of skin research.
536 _ _ |0 G:(DE-HGF)POF3-311
|a 311 - Signalling pathways, cell and tumor biology (POF3-311)
|c POF3-311
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series, PubMed,
650 _ 7 |2 Other
|a 3D models
650 _ 7 |2 Other
|a Cell-derived matrix
650 _ 7 |2 Other
|a Dermal equivalent
650 _ 7 |2 Other
|a ECM
650 _ 7 |2 Other
|a Fibroblast
650 _ 7 |2 Other
|a Human model
650 _ 7 |2 Other
|a Keratinocyte
650 _ 7 |2 Other
|a Long-term
650 _ 7 |2 Other
|a Modeling approach
650 _ 7 |2 Other
|a Organ
650 _ 7 |2 Other
|a Protocol
650 _ 7 |2 Other
|a Self-assembled
650 _ 7 |2 Other
|a Skin equivalents
650 _ 7 |2 Other
|a Tissue
650 _ 2 |2 MeSH
|a Cells, Cultured
650 _ 2 |2 MeSH
|a Cytological Techniques: methods
650 _ 2 |2 MeSH
|a Extracellular Matrix: metabolism
650 _ 2 |2 MeSH
|a Fibroblasts: cytology
650 _ 2 |2 MeSH
|a Fibroblasts: metabolism
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Keratinocytes: cytology
650 _ 2 |2 MeSH
|a Keratinocytes: metabolism
700 1 _ |0 P:(DE-He78)c1895aa471c7ac9c7173045464b69b31
|a Boukamp, Petra
|b 1
|e Last author
|u dkfz
773 _ _ |0 PERI:(DE-600)2257731-2
|a doi: 10.1016/bs.mcb.2019.11.012
|p 309-332
|t Methods in cell biology
|v 156
|x 0091-679X
|y 2020
909 C O |o oai:inrepo02.dkfz.de:167465
|p VDB
910 1 _ |0 I:(DE-588b)2036810-0
|6 P:(DE-He78)c1895aa471c7ac9c7173045464b69b31
|a Deutsches Krebsforschungszentrum
|b 1
|k DKFZ
913 1 _ |0 G:(DE-HGF)POF3-311
|1 G:(DE-HGF)POF3-310
|2 G:(DE-HGF)POF3-300
|3 G:(DE-HGF)POF3
|4 G:(DE-HGF)POF
|a DE-HGF
|b Gesundheit
|l Krebsforschung
|v Signalling pathways, cell and tumor biology
|x 0
913 2 _ |0 G:(DE-HGF)POF4-319H
|1 G:(DE-HGF)POF4-310
|2 G:(DE-HGF)POF4-300
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|a DE-HGF
|b Gesundheit
|l Krebsforschung
|v Addenda
|x 0
914 1 _ |y 2020
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b METHOD CELL BIOL : 2018
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)1120
|2 StatID
|a DBCoverage
|b BIOSIS Reviews Reports And Meetings
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
|d 2020-01-16
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2020-01-16
920 2 _ |0 I:(DE-He78)A110-20160331
|k A110
|l Genetik der Hautkarcinogenese
|x 0
920 1 _ |0 I:(DE-He78)A110-20160331
|k A110
|l Genetik der Hautkarcinogenese
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A110-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21