000167469 001__ 167469
000167469 005__ 20240229133541.0
000167469 0247_ $$2pmid$$apmid:33586217
000167469 0247_ $$2ISSN$$a0740-3194
000167469 0247_ $$2ISSN$$a1522-2594
000167469 0247_ $$2doi$$adoi: 10.1002/mrm.28699. 
000167469 0247_ $$2doi$$adoi: 10.1002/mrm.28699.
000167469 037__ $$aDKFZ-2021-00372
000167469 041__ $$aeng
000167469 082__ $$a610
000167469 1001_ $$00000-0002-0684-2423$$aGoerke, Steffen$$b0$$eFirst author
000167469 245__ $$aClinical routine acquisition protocol for 3D relaxation-compensated APT and rNOE CEST-MRI of the human brain at 3T.
000167469 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2021
000167469 3367_ $$2DRIVER$$aarticle
000167469 3367_ $$2DataCite$$aOutput Types/Journal article
000167469 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625044377_3341
000167469 3367_ $$2BibTeX$$aARTICLE
000167469 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167469 3367_ $$00$$2EndNote$$aJournal Article
000167469 500__ $$a#EA:E020#LA:E020# / 86(1):393-404
000167469 520__ $$aThe value of relaxation-compensated amide proton transfer (APT) and relayed nuclear Overhauser effect (rNOE) chemical exchange saturation transfer (CEST)-MRI has already been demonstrated in various neuro-oncological clinical applications. Recently, we translated the approach from 7T to a clinically relevant magnetic field strength of 3T. However, the overall acquisition time was still too long for a broad application in the clinical setting. The aim of this study was to establish a shorter acquisition protocol whilst maintaining the contrast behavior and reproducibility.Ten patients with glioblastoma were examined using the previous state-of-the-art acquisition protocol at 3T. The acquired spectral data were retrospectively reduced to find the minimal amount of required information that allows obtaining the same contrast behavior. To further reduce the acquisition time, also the image readout was accelerated and the pre-saturation parameters were further optimized.In total, the overall acquisition time could be reduced from 19 min to under 7 min. One key finding was that, when evaluated by the relaxation-compensated inverse metric, a contrast correction for B1 -field inhomogeneities at 3T can also be achieved reliably with CEST data at only one B1 value. In contrast, a 1-point B1 -correction was not sufficient for the common linear difference evaluation. The reproducibility of the new clinical routine acquisition protocol was similar to the previous state-of-the-art protocol with limits of agreement below 20%.The substantial reduction in acquisition time by about 64% now allows the application of 3D relaxation-compensated APT and rNOE CEST-MRI for examinations of the human brain at 3T in clinical routine.
000167469 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000167469 588__ $$aDataset connected to PubMed,
000167469 650_7 $$2Other$$aAPT
000167469 650_7 $$2Other$$aCEST
000167469 650_7 $$2Other$$aMRI
000167469 650_7 $$2Other$$acancer
000167469 650_7 $$2Other$$aproteins
000167469 650_7 $$2Other$$arNOE
000167469 7001_ $$0P:(DE-He78)8a54e49721e8ba58de289702bad026d9$$aBreitling, Johannes$$b1$$udkfz
000167469 7001_ $$0P:(DE-He78)577a5c61f44b8023e229610afbc7cd4e$$aKorzowski, Andreas$$b2$$udkfz
000167469 7001_ $$0P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc$$aPaech, Daniel$$b3$$udkfz
000167469 7001_ $$aZaiss, Moritz$$b4
000167469 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b5$$udkfz
000167469 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b6$$udkfz
000167469 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b7$$eLast author$$udkfz
000167469 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28699.$$n1$$p393-404$$tMagnetic resonance in medicine$$v86$$x0740-3194$$y2021
000167469 909CO $$ooai:inrepo02.dkfz.de:167469$$pVDB
000167469 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-0684-2423$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000167469 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8a54e49721e8ba58de289702bad026d9$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000167469 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)577a5c61f44b8023e229610afbc7cd4e$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000167469 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c6e31fb8f19e185e254174554a0cccfc$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000167469 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000167469 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000167469 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000167469 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000167469 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000167469 9141_ $$y2021
000167469 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000167469 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-05$$wger
000167469 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2018$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000167469 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000167469 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000167469 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x1
000167469 980__ $$ajournal
000167469 980__ $$aVDB
000167469 980__ $$aI:(DE-He78)E020-20160331
000167469 980__ $$aI:(DE-He78)E010-20160331
000167469 980__ $$aUNRESTRICTED