000167634 001__ 167634
000167634 005__ 20240229133545.0
000167634 0247_ $$2doi$$a10.1002/mrm.28745
000167634 0247_ $$2pmid$$apmid:33634505
000167634 0247_ $$2ISSN$$a0740-3194
000167634 0247_ $$2ISSN$$a1522-2594
000167634 0247_ $$2altmetric$$aaltmetric:102021256
000167634 037__ $$aDKFZ-2021-00468
000167634 041__ $$aEnglish
000167634 082__ $$a610
000167634 1001_ $$00000-0002-8450-3021$$aLiebert, Andrzej$$b0
000167634 245__ $$aWhole-brain quantitative CEST MRI at 7T using parallel transmission methods and B 1 + correction.
000167634 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2021
000167634 3367_ $$2DRIVER$$aarticle
000167634 3367_ $$2DataCite$$aOutput Types/Journal article
000167634 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1625049788_24032
000167634 3367_ $$2BibTeX$$aARTICLE
000167634 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000167634 3367_ $$00$$2EndNote$$aJournal Article
000167634 500__ $$a#LA:E020# / 86(1):346-362
000167634 520__ $$aTo enable whole-brain quantitative CEST MRI at ultra-high magnetic field strengths (B0 ≥ 7T) within short acquisition times.Multiple interleaved mode saturation (MIMOSA) was combined with fast online-customized (FOCUS) parallel transmission (pTx) excitation pulses and B 1 + correction to achieve homogenous whole-brain coverage. Examinations of 13 volunteers were performed on a 7T MRI system with 3 different types of pulse sequences: (1) saturation in circular polarized (CP) mode and CP mode readout, (2) MIMOSA and CP readout, and (3) MIMOSA and FOCUS readout. For comparison, the inverse magnetic transfer ratio metric for relayed nuclear Overhauser effect and amide proton transfer were calculated. To investigate the number of required acquisitions for a good B 1 + correction, 4 volunteers were measured with 6 different B1 amplitudes. Finally, time point repeatability was investigated for 6 volunteers.MIMOSA FOCUS sequence using B 1 + correction, with both single and multiple points, reduced inhomogeneity of the CEST contrasts around the occipital lobe and cerebellum. Results indicate that the most stable inter-subject coefficient of variation was achieved using the MIMOSA FOCUS sequence. Time point repeatability of MIMOSA FOCUS with single-point B 1 + correction showed a maximum coefficient of variation below 8% for 3 measurements in a single volunteer.A combination of MIMOSA FOCUS with a single-point B 1 + correction can be used to achieve quantitative CEST measurements at ultra-high magnetic field strengths. Compared to previous B 1 + correction methods, acquisition time can be reduced as additional scans required for B 1 + correction can be omitted.
000167634 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000167634 588__ $$aDataset connected to CrossRef, PubMed,
000167634 650_7 $$2Other$$a7T
000167634 650_7 $$2Other$$achemical exchange saturation transfer
000167634 650_7 $$2Other$$afast-online customized pulses
000167634 650_7 $$2Other$$amultiple interleaved mode saturation
000167634 650_7 $$2Other$$aparallel transmission
000167634 650_7 $$2Other$$aspiral non-selective trajectory
000167634 7001_ $$00000-0002-0847-2729$$aTkotz, Katharina$$b1
000167634 7001_ $$00000-0002-4620-8216$$aHerrler, Jürgen$$b2
000167634 7001_ $$00000-0002-8232-1443$$aLinz, Peter$$b3
000167634 7001_ $$00000-0001-6795-5627$$aMennecke, Angelika$$b4
000167634 7001_ $$aGerman, Alex$$b5
000167634 7001_ $$00000-0001-7342-3715$$aLiebig, Patrick$$b6
000167634 7001_ $$aGumbrecht, Rene$$b7
000167634 7001_ $$aSchmidt, Manuel$$b8
000167634 7001_ $$aDoerfler, Arnd$$b9
000167634 7001_ $$aUder, Michael$$b10
000167634 7001_ $$aZaiss, Moritz$$b11
000167634 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b12$$eLast author$$udkfz
000167634 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28745$$gp. mrm.28745$$n1$$p346-362$$tMagnetic resonance in medicine$$v86$$x1522-2594$$y2021
000167634 909CO $$ooai:inrepo02.dkfz.de:167634$$pVDB
000167634 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000167634 9130_ $$0G:(DE-HGF)POF3-315$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImaging and radiooncology$$x0
000167634 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000167634 9141_ $$y2021
000167634 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-09-05$$wger
000167634 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-09-05$$wger
000167634 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2018$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-05
000167634 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-09-05
000167634 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000167634 980__ $$ajournal
000167634 980__ $$aVDB
000167634 980__ $$aI:(DE-He78)E020-20160331
000167634 980__ $$aUNRESTRICTED